Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Oxf Open Immunol ; 5(1): iqae003, 2024.
Article in English | MEDLINE | ID: mdl-38737941

ABSTRACT

Dengue virus (DENV) poses a global health threat, affecting millions individuals annually with no specific therapy and limited vaccines. Mosquitoes, mainly Aedes aegypti and Aedes albopictus worldwide, transmit DENV through their saliva during blood meals. In this study, we aimed to understand how Aedes mosquito saliva modulate skin immune responses during DENV infection in individuals living in mosquito-endemic regions. To accomplish this, we dissociated skin cells from Cambodian volunteers and incubated them with salivary gland extract (SGE) from three different mosquito strains: Ae. aegypti USDA strain, Ae. aegypti and Ae. albopictus wild type (WT) in the presence/absence of DENV. We observed notable alterations in skin immune cell phenotypes subsequent to exposure to Aedes salivary gland extract (SGE). Specifically, exposure lead to an increase in the frequency of macrophages expressing chemokine receptor CCR2, and neutrophils expressing CD69. Additionally, we noted a substantial increase in the percentage of macrophages that became infected with DENV in the presence of Aedes SGE. Differences in cellular responses were observed when Aedes SGE of three distinct mosquito strains were compared. Our findings deepen the understanding of mosquito saliva's role in DENV infection and skin immune responses in individuals regularly exposed to mosquito bites. This study provides insights into skin immune cell dynamics that could guide strategies to mitigate DENV transmission and other arbovirus diseases.

2.
PLoS Negl Trop Dis ; 18(4): e0011842, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38630843

ABSTRACT

BACKGROUND: Zika virus (ZIKV) has spread to five of the six World Health Organization (WHO) regions. Given the substantial number of asymptomatic infections and clinical presentations resembling those of other arboviruses, estimating the true burden of ZIKV infections is both challenging and essential. Therefore, we conducted a systematic review and meta-analysis of seroprevalence studies of ZIKV IgG in asymptomatic population to estimate its global impact and distribution. METHODOLOGY/PRINCIPAL FINDINGS: We conducted extensive searches and compiled a collection of articles published from Jan/01/2000, to Jul/31/2023, from Embase, Pubmed, SciELO, and Scopus databases. The random effects model was used to pool prevalences, reported with their 95% confidence interval (CI), a tool to assess the risk of study bias in prevalence studies, and the I2 method for heterogeneity (PROSPERO registration No. CRD42023442227). Eighty-four studies from 49 countries/territories, with a diversity of study designs and serological tests were included. The global seroprevalence of ZIKV was 21.0% (95%CI 16.1%-26.4%). Evidence of IgG antibodies was identified in all WHO regions, except for Europe. Seroprevalence correlated with the epidemics in the Americas (39.9%, 95%CI:30.0-49.9), and in some Western Pacific countries (15.6%, 95%CI:8.2-24.9), as well as with recent and past circulation in Southeast Asia (22.8%, 95%CI:16.5-29.7), particularly in Thailand. Additionally, sustained low circulation was observed in Africa (8.4%, 95%CI:4.8-12.9), except for Gabon (43.7%), and Burkina Faso (22.8%). Although no autochthonous transmission was identified in the Eastern Mediterranean, a seroprevalence of 16.0% was recorded. CONCLUSIONS/SIGNIFICANCE: The study highlights the high heterogeneity and gaps in the distribution of seroprevalence. The implementation of standardized protocols and the development of tests with high specificity are essential for ensuring a valid comparison between studies. Equally crucial are vector surveillance and control methods to reduce the risk of emerging and re-emerging ZIKV outbreaks, whether caused by Ae. aegypti or Ae. albopictus or by the Asian or African ZIKV.


Subject(s)
Antibodies, Viral , Zika Virus Infection , Zika Virus , Humans , Seroepidemiologic Studies , Zika Virus Infection/epidemiology , Zika Virus/immunology , Antibodies, Viral/blood , Immunoglobulin G/blood , Global Health , Asymptomatic Infections/epidemiology
3.
Viruses ; 15(12)2023 11 28.
Article in English | MEDLINE | ID: mdl-38140574

ABSTRACT

The global public health burden exerted by viruses partially stems from viruses' ability to subdue host cells into creating an environment that promotes their multiplication (i.e., pro-viral). It has been discovered that viruses alter cell physiology by transferring viral material through extracellular vesicles (EVs), which serve as vehicles for intercellular communication. Here, we aim to provide a conceptual framework of all possible EV-virus associations and their resulting functions in infection output. First, we describe the different viral materials potentially associated with EVs by reporting that EVs can harbor entire virions, viral proteins and viral nucleic acids. We also delineate the different mechanisms underlying the internalization of these viral components into EVs. Second, we describe the potential fate of EV-associated viral material cargo by detailing how EV can circulate and target a naive cell once secreted. Finally, we itemize the different pro-viral strategies resulting from EV associations as the Trojan horse strategy, an alternative mode of viral transmission, an expansion of viral cellular tropism, a pre-emptive alteration of host cell physiology and an immunity decoy. With this conceptual overview, we aim to stimulate research on EV-virus interactions.


Subject(s)
Exosomes , Extracellular Vesicles , Extracellular Vesicles/metabolism , Biological Transport , Viral Structures , Exosomes/metabolism
4.
PLoS Negl Trop Dis ; 17(10): e0010803, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37871008

ABSTRACT

BACKGROUND: Rabies is a zoonotic disease of all warm-blooded animals including humans. There is a paucity of data on the status of rabies in wild animals in Cameroon and the disease is endemic in the country with dogs being the main source of transmission. Bat habitats are widespread in Cameroon, but there is limited information on the prevalence of rabies in bats, and their role of as potential reservoirs of rabies virus. METHODS: A cross sectional study was carried out to estimate the prevalence and to assess risk factors of rabies virus in bats in the North Region of Cameroon. A total of 212 bats belonging to three families (Pteropodidae, Vespertilionidae and Molossidae) and 5 species were sampled in 7 localities in the North Region of Cameroon and were tested for rabies virus antigen using direct Immunofluorescence Test (IFA). RESULTS: Overall, 26.9% (57/212) of the bats collected showed an IFA positive reaction. The prevalence was significantly higher (P<0.05) in adult bats (33.3% (36/108)) compared to young individuals (20.2%; 21/104). The main risk factors identified in the study for human exposure to bats were gender (Male), religion (Christianity), localities (Babla and Lagdo), the practice of bat hunting, bat consumption, unawareness of bat rabies and cohabitation with bats in close proximity. CONCLUSION: The study revealed the first evidence of Lyssavirus in bats in Cameroon. This finding showed that bat rabies are real and represents a potential public health concern in communities with bat habitats in the North Region of Cameroon. Enhancing the level of public awareness and health education on the potential of bats as reservoirs of Lyssavirus in Cameroon as well as the integration of the "One Health" approach for effective management of animal and human rabies should be emphasized.


Subject(s)
Chiroptera , Rabies virus , Rabies , Animals , Humans , Male , Cameroon/epidemiology , Chiroptera/virology , Cross-Sectional Studies , Lyssavirus , Prevalence , Public Health , Rabies/epidemiology , Rabies/veterinary , Rabies virus/isolation & purification , Female
5.
Viruses ; 15(7)2023 06 27.
Article in English | MEDLINE | ID: mdl-37515135

ABSTRACT

Among emerging zoonotic pathogens, mosquito-borne viruses (MBVs) circulate between vertebrate animals and mosquitoes and represent a serious threat to humans via spillover from enzootic cycles to the human community. Active surveillance of MBVs in their vectors is therefore essential to better understand and prevent spillover and emergence, especially at the human-animal interface. In this study, we assessed the presence of MBVs using molecular and phylogenetic methods in mosquitoes collected along an ecological gradient ranging from rural urbanized areas to highland forest areas in northern Thailand. We have detected the presence of insect specific flaviviruses in our samples, and the presence of the emerging zoonotic Tembusu virus (TMUV). Reported for the first time in 1955 in Malaysia, TMUV remained for a long time in the shadow of other flaviviruses such as dengue virus or the Japanese encephalitis virus. In this study, we identified two new TMUV strains belonging to cluster 3, which seems to be endemic in rural areas of Thailand and highlighted the genetic specificities of this Thai cluster. Our results show the active circulation of this emerging flavivirus in Thailand and the need for continuous investigation on this poorly known but threatening virus in Asia.


Subject(s)
Culex , Culicidae , Flavivirus , Animals , Humans , Phylogeny , Thailand/epidemiology , Mosquito Vectors , Flavivirus/genetics
6.
Sci Rep ; 13(1): 11271, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438463

ABSTRACT

Dengue (DENV) and chikungunya (CHIKV) viruses are among the most preponderant arboviruses. Although primarily transmitted through the bite of Aedes aegypti mosquitoes, Aedes albopictus and Aedes malayensis are competent vectors and have an impact on arbovirus epidemiology. Here, to fill the gap in our understanding of the molecular interactions between secondary vectors and arboviruses, we used transcriptomics to profile the whole-genome responses of A. albopictus to CHIKV and of A. malayensis to CHIKV and DENV at 1 and 4 days post-infection (dpi) in midguts. In A. albopictus, 1793 and 339 genes were significantly regulated by CHIKV at 1 and 4 dpi, respectively. In A. malayensis, 943 and 222 genes upon CHIKV infection, and 74 and 69 genes upon DENV infection were significantly regulated at 1 and 4 dpi, respectively. We reported 81 genes that were consistently differentially regulated in all the CHIKV-infected conditions, identifying a CHIKV-induced signature. We identified expressed immune genes in both mosquito species, using a de novo assembled midgut transcriptome for A. malayensis, and described the immune architectures. We found the JNK pathway activated in all conditions, generalizing its antiviral function to Aedines. Our comprehensive study provides insight into arbovirus transmission by multiple Aedes vectors.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Dengue , Animals , Transcriptome , Aedes/genetics , Chikungunya virus/genetics , Chikungunya Fever/genetics , Mosquito Vectors/genetics , Dengue/genetics
7.
Front Public Health ; 11: 1141483, 2023.
Article in English | MEDLINE | ID: mdl-37383270

ABSTRACT

The ongoing significant social, environmental, and economic changes in Southeast Asia (SEA) make the region highly vulnerable to the emergence and re-emergence of zoonotic viral diseases. In the last century, SEA has faced major viral outbreaks with great health and economic impact, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), arboviruses, highly pathogenic avian influenza (H5N1), and Severe Acute Respiratory Syndrome (SARS-CoV); and so far, imported cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Given the recent challenging experiences in addressing emerging zoonotic diseases, it is necessary to redouble efforts to effectively implement the "One Health" initiative in the region, which aims to strengthen the human-animal-plant-environment interface to better prevent, detect and respond to health threats while promoting sustainable development. This review provides an overview of important emerging and re-emerging zoonotic viral diseases in SEA, with emphasis on the main drivers behind their emergency, the epidemiological situation from January 2000 to October 2022, and the importance of One Health to promote improved intervention strategies.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Virus Diseases , Animals , Humans , COVID-19/epidemiology , SARS-CoV-2 , Zoonoses/epidemiology , Virus Diseases/epidemiology , Asia, Southeastern/epidemiology
8.
PLoS Pathog ; 19(3): e1011224, 2023 03.
Article in English | MEDLINE | ID: mdl-36996041

ABSTRACT

Mosquito transmission of dengue viruses to humans starts with infection of skin resident cells at the biting site. There is great interest in identifying transmission-enhancing factors in mosquito saliva in order to counteract them. Here we report the discovery of high levels of the anti-immune subgenomic flaviviral RNA (sfRNA) in dengue virus 2-infected mosquito saliva. We established that sfRNA is present in saliva using three different methods: northern blot, RT-qPCR and RNA sequencing. We next show that salivary sfRNA is protected in detergent-sensitive compartments, likely extracellular vesicles. In support of this hypothesis, we visualized viral RNAs in vesicles in mosquito saliva and noted a marked enrichment of signal from 3'UTR sequences, which is consistent with the presence of sfRNA. Furthermore, we show that incubation with mosquito saliva containing higher sfRNA levels results in higher virus infectivity in a human hepatoma cell line and human primary dermal fibroblasts. Transfection of 3'UTR RNA prior to DENV2 infection inhibited type I and III interferon induction and signaling, and enhanced viral replication. Therefore, we posit that sfRNA present in salivary extracellular vesicles is delivered to cells at the biting site to inhibit innate immunity and enhance dengue virus transmission.


Subject(s)
Aedes , Culicidae , Dengue , Flavivirus , Animals , Humans , Flavivirus/genetics , Subgenomic RNA , Saliva/metabolism , 3' Untranslated Regions , Virus Replication , RNA, Viral/genetics , RNA, Viral/metabolism
9.
Nucleic Acids Res ; 51(6): 2501-2515, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36354007

ABSTRACT

RNA 2'O-methylation is a 'self' epitranscriptomic modification allowing discrimination between host and pathogen. Indeed, human immunodeficiency virus 1 (HIV-1) induces 2'O-methylation of its genome by recruiting the cellular FTSJ3 methyltransferase, thereby impairing detection by RIG-like receptors. Here, we show that RNA 2'O-methylations interfere with the antiviral activity of interferon-stimulated gene 20-kDa protein (ISG20). Biochemical experiments showed that ISG20-mediated degradation of 2'O-methylated RNA pauses two nucleotides upstream of and at the methylated residue. Structure-function analysis indicated that this inhibition is due to steric clash between ISG20 R53 and D90 residues and the 2'O-methylated nucleotide. We confirmed that hypomethylated HIV-1 genomes produced in FTSJ3-KO cells were more prone to in vitro degradation by ISG20 than those produced in cells expressing FTSJ3. Finally, we found that reverse-transcription of hypomethylated HIV-1 was impaired in T cells by interferon-induced ISG20, demonstrating the direct antagonist effect of 2'O-methylation on ISG20-mediated antiviral activity.


Despite highly effective antiretroviral therapies, the human immunodeficiency virus (HIV-1) remains a major public health threat. Its pathogenesis depends on its ability to establish a persistent infection in cells of the immune system. Our study highlights a new insight into how HIV-1 evades early restriction by the immune system. We showed that 2'O-methylation marks found inside HIV-1 RNA promote viral evasion from the antiviral action of the interferon-stimulated gene 20-kDa protein (ISG20), an innate immune restriction factor with a nuclease activity. By disrupting the level of 2'O-methylation of the HIV-1 genome, we demonstrated that ISG20 impairs the reverse transcription process of hypomethylated viruses, as a result of viral RNA decay.


Subject(s)
Exoribonucleases , HIV Infections , HIV-1 , RNA, Viral , Humans , Exoribonucleases/genetics , HIV Infections/virology , HIV-1/genetics , Host-Parasite Interactions , Interferons , Methylation , RNA Processing, Post-Transcriptional , RNA, Viral/metabolism
10.
Nat Commun ; 13(1): 7036, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396947

ABSTRACT

Mosquito-borne viruses are a growing global threat. Initial viral inoculation occurs in the skin via the mosquito 'bite', eliciting immune responses that shape the establishment of infection and pathogenesis. Here we assess the cutaneous innate and adaptive immune responses to controlled Aedes aegypti feedings in humans living in Aedes-endemic areas. In this single-arm, cross-sectional interventional study (trial registration #NCT04350905), we enroll 30 healthy adult participants aged 18 to 45 years of age from Cambodia between October 2020 and January 2021. We perform 3-mm skin biopsies at baseline as well as 30 min, 4 h, and 48 h after a controlled feeding by uninfected Aedes aegypti mosquitos. The primary endpoints are measurement of changes in early and late innate responses in bitten vs unbitten skin by gene expression profiling, immunophenotyping, and cytokine profiling. The results reveal induction of neutrophil degranulation and recruitment of skin-resident dendritic cells and M2 macrophages. As the immune reaction progresses T cell priming and regulatory pathways are upregulated along with a shift to Th2-driven responses and CD8+ T cell activation. Stimulation of participants' bitten skin cells with Aedes aegypti salivary gland extract results in reduced pro-inflammatory cytokine production. These results identify key immune genes, cell types, and pathways in the human response to mosquito bites and can be leveraged to inform and develop novel therapeutics and vector-targeted vaccine candidates to interfere with vector-mediated disease.


Subject(s)
Aedes , Insect Bites and Stings , Adolescent , Adult , Animals , Humans , Middle Aged , Young Adult , Cross-Sectional Studies , Cytokines , Immunity , Mosquito Vectors
11.
PLoS Pathog ; 18(9): e1010427, 2022 09.
Article in English | MEDLINE | ID: mdl-36121894

ABSTRACT

Dengue viruses (DENV) are expanding global pathogens that are transmitted through the bite of mosquitoes, mostly Aedes aegypti. As RNA viruses, DENV rely on RNA-binding proteins (RBPs) to complete their life cycle. Alternatively, RBPs can act as restriction factors that prevent DENV multiplication. While the importance of RBPs is well-supported in humans, there is a dearth of information about their influence on DENV transmission by mosquitoes. Such knowledge could be harnessed to design novel, effective interventions against DENV. Here, we successfully adapted RNA-affinity chromatography coupled with mass spectrometry-a technique initially developed in mammalian cells-to identify RBPs in Ae. aegypti cells. We identified fourteen RBPs interacting with DENV serotype 2 3'UTR, which is involved in the viral multiplication and produces subgenomic flaviviral RNA (sfRNA). We validated the RNA affinity results for two RBPs by confirming that AePur binds the 3'UTR, whereas AeStaufen interacts with both 3'UTR and sfRNA. Using in vivo functional evaluation, we determined that RBPs like AeRan, AeExoRNase, and AeRNase have pro-viral functions, whereas AeGTPase, AeAtu, and AePur have anti-viral functions in mosquitoes. Furthermore, we showed that human and mosquito Pur homologs have a shared affinity to DENV2 RNA, although the anti-viral effect is specific to the mosquito protein. Importantly, we revealed that AeStaufen mediates a reduction of gRNA and sfRNA copies in several mosquito tissues, including the salivary glands and that AeStaufen-mediated sfRNA reduction diminishes the concentration of transmission-enhancing sfRNA in saliva, thereby revealing AeStaufen's role in DENV transmission. By characterizing the first RBPs that associate with DENV2 3'UTR in mosquitoes, our study unravels new pro- and anti-viral targets for the design of novel therapeutic interventions as well as provides foundation for studying the role of RBPs in virus-vector interactions.


Subject(s)
Aedes , Dengue Virus , Dengue , 3' Untranslated Regions/genetics , Aedes/genetics , Animals , Carrier Proteins/genetics , Dengue Virus/genetics , Humans , Mammals , Mosquito Vectors/genetics , RNA, Guide, Kinetoplastida , RNA-Binding Proteins/genetics , Saliva
12.
Viruses ; 14(4)2022 04 09.
Article in English | MEDLINE | ID: mdl-35458511

ABSTRACT

BACKGROUND: Studies have linked bats to outbreaks of viral diseases in human populations such as SARS-CoV-1 and MERS-CoV and the ongoing SARS-CoV-2 pandemic. METHODS: We carried out a longitudinal survey from August 2020 to July 2021 at two sites in Zimbabwe with bat-human interactions: Magweto cave and Chirundu farm. A total of 1732 and 1866 individual bat fecal samples were collected, respectively. Coronaviruses and bat species were amplified using PCR systems. RESULTS: Analysis of the coronavirus sequences revealed a high genetic diversity, and we identified different sub-viral groups in the Alphacoronavirus and Betacoronavirus genus. The established sub-viral groups fell within the described Alphacoronavirus sub-genera: Decacovirus, Duvinacovirus, Rhinacovirus, Setracovirus and Minunacovirus and for Betacoronavirus sub-genera: Sarbecoviruses, Merbecovirus and Hibecovirus. Our results showed an overall proportion for CoV positive PCR tests of 23.7% at Chirundu site and 16.5% and 38.9% at Magweto site for insectivorous bats and Macronycteris gigas, respectively. CONCLUSIONS: The higher risk of bat coronavirus exposure for humans was found in December to March in relation to higher viral shedding peaks of coronaviruses in the parturition, lactation and weaning months of the bat populations at both sites. We also highlight the need to further document viral infectious risk in human/domestic animal populations surrounding bat habitats in Zimbabwe.


Subject(s)
Alphacoronavirus , COVID-19 , Chiroptera , Animals , COVID-19/epidemiology , Evolution, Molecular , Female , Genome, Viral , Phylogeny , SARS-CoV-2/genetics , Zimbabwe/epidemiology
13.
Parasit Vectors ; 15(1): 73, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35248159

ABSTRACT

BACKGROUND: The human louse (Pediculus humanus) is a haematophagous ectoparasite that is intimately related to its host. It has been of great public health concern throughout human history. This louse has been classified into six divergent mitochondrial clades (A, D, B, F, C and E). As with all haematophagous lice, P. humanus directly depends on the presence of a bacterial symbiont, known as "Candidatus Riesia pediculicola", to complement their unbalanced diet. In this study, we evaluated the codivergence of human lice around the world and their endosymbiotic bacteria. Using molecular approaches, we targeted lice mitochondrial genes from the six diverged clades and Candidatus Riesia pediculicola housekeeping genes. METHODS: The mitochondrial cytochrome b gene (cytb) of lice was selected for molecular analysis, with the aim to identify louse clade. In parallel, we developed four PCR primer pairs targeting three housekeeping genes of Candidatus Riesia pediculicola: ftsZ, groEL and two regions of the rpoB gene (rpoB-1 and rpoB-2). RESULTS: The endosymbiont phylogeny perfectly mirrored the host insect phylogeny using the ftsZ and rpoB-2 genes, in addition to showing a significant co-phylogenetic congruence, suggesting a strict vertical transmission and a host-symbiont co-speciation following the evolutionary course of the human louse. CONCLUSION: Our results unequivocally indicate that louse endosymbionts have experienced a similar co-evolutionary history and that the human louse clade can be determined by their endosymbiotic bacteria.


Subject(s)
Anoplura , Pediculus , Animals , Anoplura/genetics , Biological Evolution , Genes, Mitochondrial , Humans , Pediculus/microbiology , Phylogeny
14.
Infect Genet Evol ; 98: 105204, 2022 03.
Article in English | MEDLINE | ID: mdl-34999003

ABSTRACT

Mammarenaviruses have been a growing concern for public health in Africa since the 1970s when Lassa virus cases in humans were first described in west Africa. In southern Africa, a single outbreak of Lujo virus was reported to date in South Africa in 2008 with a case fatality rate of 80%. The natural reservoir of Lassa virus is Mastomys natalensis while for the Lujo virus the natural host has yet to be identified. Mopeia virus was described for the first time in M. natalensis in the central Mozambique in 1977 but few studies have been conducted in the region. In this study, rodents were trapped between March and November 2019in villages, croplands fields and mopane woodland forest. The aim was to assess the potential circulation and to evaluate the genetic diversity of mammarenaviruses in M. natalensis trapped in the Limpopo National Park and its buffer zone in Massingir district, Mozambique. A total of 534 M. natalensis were screened by RT-PCR and the overall proportion of positive individuals was 16.9%. No significant differences were detected between the sampled habitats (χ2 = 0.018; DF = 1; p = 0.893). The Mopeia virus (bootstrap value 91%) was the Mammarenavirus circulating in the study area sites, forming a specific sub-clade with eight different sub-clusters. We concluded that Mopeia virus circulates in all habitats investigated and it forms a different sub-clade to the one reported in central Mozambique in 1977.


Subject(s)
Arenaviridae Infections/veterinary , Arenaviridae/isolation & purification , Murinae , Rodent Diseases/epidemiology , Animals , Arenaviridae Infections/epidemiology , Ecosystem , Mozambique/epidemiology , Parks, Recreational
15.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35012987

ABSTRACT

Mosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquito-borne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a high-resolution, video-based assay to observe the blood-feeding behavior of Aedes aegypti mosquitoes on mice. We then applied multivariate analysis on the high-throughput, unbiased data generated from the assay to ordinate behavioral parameters into complex behaviors. We showed that DENV infection increases mosquito attraction to the host and hinders its biting efficiency, the latter resulting in the infected mosquitoes biting more to reach similar blood repletion as uninfected mosquitoes. To examine how increased biting influences DENV transmission to the host, we established an in vivo transmission model with immuno-competent mice and demonstrated that successive short probes result in multiple transmissions. Finally, to determine how DENV-induced alterations of host-seeking and biting behaviors influence dengue epidemiology, we integrated the behavioral data within a mathematical model. We calculated that the number of infected hosts per infected mosquito, as determined by the reproduction rate, tripled when mosquito behavior was influenced by DENV infection. Taken together, this multidisciplinary study details how DENV infection modulates mosquito blood-feeding behavior to increase vector capacity, proportionally aggravating DENV epidemiology. By elucidating the contribution of mosquito behavioral alterations on DENV transmission to the host, these results will inform epidemiological modeling to tailor improved interventions against dengue.


Subject(s)
Aedes/virology , Dengue Virus/physiology , Dengue/transmission , Dengue/virology , Feeding Behavior/physiology , Host-Pathogen Interactions/physiology , Animals , Behavior, Animal/physiology , Multivariate Analysis
16.
Front Physiol ; 12: 763195, 2021.
Article in English | MEDLINE | ID: mdl-34899388

ABSTRACT

Mosquito-borne flaviviruses, such as dengue (DENV), Zika (ZIKV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses, threaten a large part of the human populations. In absence of therapeutics and effective vaccines against each flaviviruses, targeting viral metabolic requirements in mosquitoes may hold the key to new intervention strategies. Development of metabolomics in the last decade opened a new field of research: mosquito metabolomics. It is now clear that flaviviruses rely on mosquito lipids, especially phospholipids, for their cellular cycle and propagation. Here, we review the biosyntheses of, biochemical properties of and flaviviral interactions with mosquito phospholipids. Phospholipids are structural lipids with a polar headgroup and apolar acyl chains, enabling the formation of lipid bilayer that form plasma- and endomembranes. Phospholipids are mostly synthesized through the de novo pathway and remodeling cycle. Variations in headgroup and acyl chains influence phospholipid physicochemical properties and consequently the membrane behavior. Flaviviruses interact with cellular membranes at every step of their cellular cycle. Recent evidence demonstrates that flaviviruses reconfigure the phospholipidome in mosquitoes by regulating phospholipid syntheses to increase virus multiplication. Identifying the phospholipids involved and understanding how flaviviruses regulate these in mosquitoes is required to design new interventions.

17.
Sci Rep ; 11(1): 23696, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880409

ABSTRACT

Arboviruses such as dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses infect close to half a billion people per year, and are primarily transmitted through Aedes aegypti bites. Infection-induced changes in mosquito salivary glands (SG) influence transmission by inducing antiviral immunity, which restricts virus replication in the vector, and by altering saliva composition, which influences skin infection. Here, we profiled SG proteome responses to DENV serotype 2 (DENV2), ZIKV and CHIKV infections by using high-resolution isobaric-tagged quantitative proteomics. We identified 218 proteins with putative functions in immunity, blood-feeding or related to the cellular machinery. We observed that 58, 27 and 29 proteins were regulated by DENV2, ZIKV and CHIKV infections, respectively. While the regulation patterns were mostly virus-specific, we separately depleted four uncharacterized proteins that were upregulated by all three viral infections to determine their effects on these viral infections. Our study suggests that gamma-interferon responsive lysosomal thiol-like (GILT-like) has an anti-ZIKV effect, adenosine deaminase (ADA) has an anti-CHIKV effect, salivary gland surface protein 1 (SGS1) has a pro-ZIKV effect and salivary gland broad-spectrum antiviral protein (SGBAP) has an antiviral effect against all three viruses. The comprehensive description of SG responses to three global pathogenic viruses and the identification of new restriction factors improves our understanding of the molecular mechanisms influencing transmission.


Subject(s)
Aedes/physiology , Aedes/virology , Chikungunya virus/immunology , Dengue Virus/immunology , Host-Pathogen Interactions/immunology , Salivary Glands/physiology , Salivary Glands/virology , Zika Virus/immunology , Aedes/classification , Animals , Chromatography, Liquid , Computational Biology/methods , Disease Resistance , Female , Phylogeny , Proteomics/methods , Tandem Mass Spectrometry
18.
Viruses ; 13(11)2021 11 03.
Article in English | MEDLINE | ID: mdl-34835018

ABSTRACT

Mayaro virus (MAYV) is an emergent alphavirus that causes MAYV fever. It is often associated with debilitating symptoms, particularly arthralgia and myalgia. MAYV infection is becoming a considerable health issue that, unfortunately, lacks a specific antiviral treatment. Favipiravir, a broad-spectrum antiviral drug, has recently been shown to exert anti-MAYV activity in vitro. In the present study, the potential of Favipiravir to inhibit MAYV replication in an in vivo model was evaluated. Immunocompetent mice were orally administrated 300 mg/kg/dose of Favipiravir at pre-, concurrent-, or post-MAYV infection. The results showed a significant reduction in infectious viral particles and viral RNA transcripts in the tissues and blood of the pre- and concurrently treated infected mice. A significant reduction in the presence of both viral RNA transcript and infectious viral particles in the tissue and blood of pre- and concurrently treated infected mice was observed. By contrast, Favipiravir treatment post-MAYV infection did not result in a reduction in viral replication. Interestingly, Favipiravir strongly decreased the blood levels of the liver disease markers aspartate- and alanine aminotransferase in the pre- and concurrently treated MAYV-infected mice. Taken together, these results suggest that Favipiravir is a potent antiviral drug when administered in a timely manner.


Subject(s)
Alphavirus Infections/drug therapy , Alphavirus/drug effects , Amides/pharmacology , Antiviral Agents/pharmacology , Pyrazines/pharmacology , Alanine Transaminase/drug effects , Alphavirus Infections/virology , Animals , Aspartate Aminotransferases/drug effects , Cell Line , Chlorocebus aethiops , Disease Models, Animal , Female , Liver , Mice , Mice, Inbred C57BL , Vero Cells , Virus Replication/drug effects
19.
Pathogens ; 10(9)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34578158

ABSTRACT

Aedes aegypti acts as a vector for several arboviral diseases that impose a major socio-economic burden. Moreover, the absence of a vaccine against these diseases and drug resistance in mosquitoes necessitates the development of new control strategies for vector-borne diseases. ABC transporters that play a vital role in immunity and other cellular processes in different organisms may act as non-canonical immune molecules against arboviruses, however, their role in mosquito immunity remains unexplored. This study comprehensively analyzed various genetic features of putative ABC transporters and classified them into A-H subfamilies based on their evolutionary relationships. Existing RNA-sequencing data analysis indicated higher expression of cytosolic ABC transporter genes (E & F Subfamily) throughout the mosquito development, while members of other subfamilies exhibited tissue and time-specific expression. Furthermore, comparative gene expression analysis from the microarray dataset of mosquito infected with dengue, yellow fever and West Nile viruses revealed 31 commonly expressed ABC transporters suggesting a potentially conserved transcriptomic signature of arboviral infection. Among these, only a few transporters of ABCA, ABCC and ABCF subfamily were upregulated, while most were downregulated. This indicates the possible involvement of ABC transporters in mosquito immunity.

20.
Infect Genet Evol ; 95: 105066, 2021 11.
Article in English | MEDLINE | ID: mdl-34487865

ABSTRACT

Managing emerging infectious diseases is a current challenge in the fields of microbiology and epidemiology. Indeed, among other environmental and human-related factors, climate change and global warming favor the emergence of new pathogens. The recent Zika virus (ZIKV) epidemic, of which the large and rapid spread surprised the scientific community, is a reminder of the importance to study viruses currently responsible for sporadic infections. Increasing our knowledge of key factors involved in emerging infections is essential to implement specific monitoring that can be oriented according to the pathogen, targeted population, or at-risk environment. Recent technological developments, such as high-throughput sequencing, genome-wide association studies and CRISPR screenings have allowed the identification of human single nucleotide polymorphisms (SNPs) involved in infectious disease outcome. This review focuses on the human genetic host factors that have been identified and shown to be associated with the pathogenesis of ZIKV infection and candidate SNP targets.


Subject(s)
Communicable Diseases, Emerging/genetics , Zika Virus Infection/genetics , Zika Virus/genetics , Communicable Diseases, Emerging/virology , Humans , Zika Virus Infection/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...