Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(9): e30613, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737240

ABSTRACT

Zika virus (ZIKV) infections during pregnancy can result in Congenital Zika Syndrome (CZS), a range of severe neurological outcomes in fetuses that primarily occur during early gestational stages possibly due to placental damage. Although some placentas can maintain ZIKV persistence for weeks or months after the initial infection and diagnosis, the impact of this viral persistence is still unknown. Here, we aimed to investigate the immunological repercussion of ZIKV persistence in term placentas. As such, term placentas from 64 pregnant women diagnosed with Zika in different gestational periods were analyzed by ZIKV RT-qPCR, examination of decidua and placental villous histopathology, and expression of inflammation-related genes and IFNL1-4. Subsequently, we explored primary cultures of term decidual Extravillous Trophoblasts (EVTs) and Term Chorionic Villi (TCV) explants, as in vitro models to access the immunological consequences of placental ZIKV infection. Placenta from CZS cases presented low IFNL1-4 expression, evidencing the critical protective role of theses cytokines in the clinical outcome. Term placentas cleared for ZIKV showed increased levels of IFNL1, 3, and 4, whether viral persistence was related with a proinflammatory profile. Conversely, upon ZIKV persistence placentas with decidual inflammation showed high IFNL1-4 levels. In vitro experiments showed that term EVTs are more permissive, and secreted higher levels of IFN-α2 and IFN-λ1 compared to TCV explants. The results suggest that, upon ZIKV persistence, the maternal-skewed decidua contributes to placental inflammatory and antiviral signature, through chronic deciduitis and IFNL upregulation. Although further studies are needed to elucidate the mechanisms underlying the decidual responses against ZIKV. Hence, this study presents unique insights and valuable in vitro models for evaluating the immunological landscape of placentas upon ZIKV persistence.

2.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37895823

ABSTRACT

Despite the rapid mass vaccination against COVID-19, the emergence of new SARS-CoV-2 variants of concern, such as omicron, is still a great distress, and new therapeutic options are needed. Bovine lactoferrin (bLf), a multifunctional iron-binding glycoprotein available in unsaturated (apo-bLf) and saturated (holo-bLf) forms, has been shown to exert broad-spectrum antiviral activity against many viruses. In this study, we evaluated the efficacy of both forms of bLf at 1 mg/mL against infection of Vero cells by SARS-CoV-2. As assessed with antiviral assays, an equivalent significant reduction in virus infection by about 70% was observed when either form of bLf was present throughout the infection procedure with the SARS-CoV-2 ancestral or omicron strain. This inhibitory effect seemed to be concentrated during the early steps of virus infection, since a significant reduction in its efficiency by about 60% was observed when apo- or holo-bLf were incubated with the cells before or during virus addition, with no significant difference between the antiviral effects of the distinct iron-saturation states of the protein. However, an ultrastructural analysis of bLf treatment during the early steps of virus infection revealed that holo-bLf was somewhat more effective than apo-bLf in inhibiting virus entry. Together, these data suggest that bLf mainly acts in the early events of SARS-CoV-2 infection and is effective against the ancestral virus as well as its omicron variant. Considering that there are no effective treatments to COVID-19 with tolerable toxicity yet, bLf shows up as a promising candidate.

3.
Viruses ; 15(7)2023 06 30.
Article in English | MEDLINE | ID: mdl-37515173

ABSTRACT

Successful SARS-CoV-2 inactivation allows its safe use in Biosafety Level 2 facilities, and the use of the whole viral particle helps in the development of analytical methods and a more reliable immune response, contributing to the development and improvement of in vitro and in vivo assays. In order to obtain a functional product, we evaluated several inactivation protocols and observed that 0.03% beta-propiolactone for 24 h was the best condition tested, as it promoted SARS-CoV-2 inactivation above 99.99% and no cytopathic effect was visualized after five serial passages. Moreover, RT-qPCR and transmission electron microscopy revealed that RNA quantification and viral structure integrity were preserved. The antigenicity of inactivated SARS-CoV-2 was confirmed by ELISA using different Spike-neutralizing monoclonal antibodies. K18-hACE2 mice immunized with inactivated SARS-CoV-2, formulated in AddaS03TM, presented high neutralizing antibody titers, no significant weight loss, and longer survival than controls from a lethal challenge, despite RNA detection in the oropharyngeal swab, lung, and brain. This work emphasizes the importance of using different techniques to confirm viral inactivation and avoid potentially disastrous contamination. We believe that an efficiently inactivated product can be used in several applications, including the development and improvement of molecular diagnostic kits, as an antigen for antibody production as well as a control for non-clinical trials.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , Antibody Formation , COVID-19/prevention & control , Antibodies, Viral , Immunization , Enzyme-Linked Immunosorbent Assay , Antibodies, Neutralizing
4.
Viruses ; 14(9)2022 08 25.
Article in English | MEDLINE | ID: mdl-36146678

ABSTRACT

Zika virus became a major public health problem in early 2015, when cases of Guillain-Barré syndrome and microcephaly were associated with viral infection. Currently, ZIKV is endemic in all tropical areas of the world, and the chance for future Zika epidemics remains very real and accurate diagnosis is crucial. The aim of this work was to select specific ssDNA aptamers that bind to the entire Zika virus and can be used to compose specific diagnostics, without cross-reactivity with other flaviviruses. Zika virus was cultivated in Vero cells and used as a target for aptamer selection. Aptamers specific for the ZIKV were selected using whole-virus SELEX, with counterselection for other flavivirus. Secondary and tertiary structures were evaluated and the molecular anchoring between the aptamers and target were simulated by the HDOCK server. Aptamer interaction was evaluated by ELISA/ELASA and the dissociation constant (Kd) was calculated by thermophoresis. Four ZIKV-specific aptamers were selected. The best two were further characterized and proved to be specific for ZIKV. Aptamers are capable of binding specifically to the ZIKV and differentiate from Dengue virus. The aptamers selected in this work can be used as capture agents in the composition of diagnostic tests to specifically detect ZIKV infection.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Animals , Antibodies, Viral , Chlorocebus aethiops , Cross Reactions , DNA, Single-Stranded , Humans , Vero Cells
5.
Viruses ; 14(9)2022 08 30.
Article in English | MEDLINE | ID: mdl-36146723

ABSTRACT

Infections caused by SARS-CoV-2 induce a severe acute respiratory syndrome called COVID-19 and have led to more than six million deaths worldwide. Vaccination is the most effective preventative measure, and cellular and humoral immunity is crucial to developing individual protection. Here, we aim to investigate hybrid immunity against SARS-CoV-2 triggered by the ChAadOx1 nCoV-19 vaccine in a Brazilian cohort. We investigated the immune response from ChAadOx1 nCoV-19 vaccination in naïve (noCOVID-19) and previously infected individuals (COVID-19) by analyzing levels of D-dimers, total IgG, neutralizing antibodies (Nabs), IFN-γ (interferon-γ) secretion, and immunophenotyping of memory lymphocytes. No significant differences in D-dimer levels were observed 7 or 15 days after vaccination (DAV). All vaccinated individuals presented higher levels of total IgG or Nabs with a positive correlation (R = 0.88). Individuals in the COVID-19 group showed higher levels of antibody and memory B cells, with a faster antibody response starting at 7 DAV compared to noCOVID-19 at 15 DAV. Further, ChAadOx1 nCoV-19 vaccination led to enhanced IFN-γ production (15 DAV) and an increase in activated T CD4+ naïve cells in noCOVID-19 individuals in contrast with COVID-19 individuals. Hence, our data support that hybrid immunity triggered by ChAadOx1 nCoV-19 vaccination is associated with enhanced humoral response, together with a balanced cellular response.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G , Interferon-gamma , SARS-CoV-2 , Vaccination
6.
Pharmaceuticals (Basel) ; 15(5)2022 May 05.
Article in English | MEDLINE | ID: mdl-35631401

ABSTRACT

The depth and versatility of siRNA technologies enable their use in disease targets that are undruggable by small molecules or that seek to achieve a refined turn-off of the genes for any therapeutic area. Major extracellular barriers are enzymatic degradation of siRNAs by serum endonucleases and RNAases, renal clearance of the siRNA delivery system, the impermeability of biological membranes for siRNA, activation of the immune system, plasma protein sequestration, and capillary endothelium crossing. To overcome the intrinsic difficulties of the use of siRNA molecules, therapeutic applications require nanometric delivery carriers aiming to protect double-strands and deliver molecules to target cells. This review discusses the history of siRNAs, siRNA design, and delivery strategies, with a focus on progress made regarding siRNA molecules in clinical trials and how siRNA has become a valuable asset for biopharmaceutical companies.

7.
Colloids Surf B Biointerfaces ; 211: 112280, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34902784

ABSTRACT

Aptamers may form well-defined three-dimensional structures binding with high affinity and stability to a specific receptor. The aptamer anti-MUC1 isoform Y is one the most used due the affinity to MUC1, which is overexpressed in several types of cancer and inflammation process. In this study we have developed, characterized, in vitro as in vivo evaluated a nanoaptamer (anti-MUC1/Y) as a nanoagent for rheumatoid arthritis treatment. The results showed that a nanoaptamer with a size range of 241 nm was produced. The entrapment efficacy was 90% with a biodistribution showing a high hepatic uptake (>98%). The results in vivo showed a potent effect in arthritis experimental model, especially in low doses. The results corroborate the applicability of this nanosystem for RA treatment.


Subject(s)
Aptamers, Nucleotide , Arthritis , Nanoparticles , Aptamers, Nucleotide/chemistry , Humans , Mucin-1/chemistry , Nanoparticles/chemistry , Tissue Distribution
8.
Cells ; 10(9)2021 08 26.
Article in English | MEDLINE | ID: mdl-34571855

ABSTRACT

The cellular immune response plays an important role in COVID-19, caused by SARS-CoV-2. This feature makes use of in vitro models' useful tools to evaluate vaccines and biopharmaceutical effects. Here, we developed a two-step model to evaluate the cellular immune response after SARS-CoV-2 infection-induced or spike protein stimulation in peripheral blood mononuclear cells (PBMC) from both unexposed and COVID-19 (primo-infected) individuals (Step1). Moreover, the supernatants of these cultures were used to evaluate its effects on lung cell lines (A549) (Step2). When PBMC from the unexposed were infected by SARS-CoV-2, cytotoxic natural killer and nonclassical monocytes expressing inflammatory cytokines genes were raised. The supernatant of these cells can induce apoptosis of A549 cells (mock vs. Step2 [mean]: 6.4% × 17.7%). Meanwhile, PBMCs from primo-infected presented their memory CD4+ T cells activated with a high production of IFNG and antiviral genes. Supernatant from past COVID-19 subjects contributed to reduce apoptosis (mock vs. Step2 [ratio]: 7.2 × 1.4) and to elevate the antiviral activity (iNOS) of A549 cells (mock vs. Step2 [mean]: 31.5% × 55.7%). Our findings showed features of immune primary cells and lung cell lines response after SARS-CoV-2 or spike protein stimulation that can be used as an in vitro model to study the immunity effects after SARS-CoV-2 antigen exposure.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunity, Cellular , Models, Biological , SARS-CoV-2/physiology , Adult , Alveolar Epithelial Cells/virology , COVID-19/blood , COVID-19/genetics , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Regulation , Humans , Immunologic Memory/immunology , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/virology , Male , Middle Aged , Phenotype , T-Lymphocytes/immunology , Virus Replication/physiology , Young Adult
9.
Pharmaceutics ; 13(8)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34452200

ABSTRACT

MUC1, the transmembrane glycoprotein Mucin 1, is usually found to be overexpressed in a variety of epithelial cancers playing an important role in disease progression. MUC1 isoforms such as MUC1/Y, which lacks the entire variable number of tandem repeat region, are involved in oncogenic processes by enhancing tumour initiation. MUC1/Y is therefore considered a promising target for the identification and treatment of epithelial cancers; but so far, the precise role of MUC1/Y remains to be elucidated. In this work, we developed and identified a DNA aptamer that specifically recognizes the splice variant MUC1/Y for the first time. The DNA aptamer could bind to a wide variety of human cancer cells, and treatment of MUC1/Y positive cells resulted in reduced growth in vitro. Moreover, MUC1/Y aptamer inhibited the tumour growth of breast cancer cells in vivo. The present study highlights the importance of targeting MUC1/Y for cancer treatment and unravels the suitability of a DNA aptamer to act as a new therapeutic tool.

10.
Viruses ; 13(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445752

ABSTRACT

The yellow fever vaccine (YF17DD) is highly effective with a single injection conferring protection for at least 10 years. The YF17DD induces polyvalent responses, with a TH1/TH2 CD4+ profile, robust T CD8+ responses, and synthesis of interferon-gamma (IFN-γ), culminating in high titers of neutralizing antibodies. Furthermore, C-type lectin domain containing 5A (CLEC5A) has been implicated in innate outcomes in other flaviviral infections. Here, we conducted a follow-up study in volunteers immunized with YF17DD, investigating the humoral response, cellular phenotypes, gene expression, and single nucleotide polymorphisms (SNPs) of IFNG and CLEC5A, to clarify the role of these factors in early response after vaccination. Activation of CLEC5A+ monocytes occurred five days after vaccination (DAV). Following, seven DAV data showed activation of CD4+ and CD8+T cells together with early positive correlations between type II IFN and genes of innate antiviral response (STAT1, STAT2, IRF7, IRF9, OAS1, and RNASEL) as well as antibody levels. Furthermore, individuals with genotypes rs2430561 AT/AA, rs2069718 AG/AA (IFNG), and rs13237944 AC/AA (CLEC5A), exhibited higher expression of IFNG and CLEC5A, respectively. Together, we demonstrated that early IFN-γ and CLEC5A responses, associated with rs2430561, rs2069718, and rs13237944 genotypes, may be key mechanisms in the long-lasting immunity elicited by YF17DD.


Subject(s)
Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immunity , Interferon-gamma/metabolism , Lectins, C-Type/genetics , Receptors, Cell Surface/genetics , Vaccination , Yellow Fever Vaccine/immunology , Yellow Fever/etiology , Yellow Fever/prevention & control , Adult , Animals , Female , Humans , Immunogenicity, Vaccine , Male , Middle Aged , Polymorphism, Genetic , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Young Adult
11.
Int J Mol Sci ; 22(1)2020 Dec 26.
Article in English | MEDLINE | ID: mdl-33375234

ABSTRACT

Arbovirus infections represent a global public health problem, and recent epidemics of yellow fever, dengue, and Zika have shown their critical importance in Brazil and worldwide. Whilst a major effort for vaccination programs has been in the spotlight, a number of aptamer approaches have been proposed in a complementary manner, offering the possibility of differential diagnosis between these arboviruses, which often present similar clinical symptoms, as well as the potential for a treatment option when no other alternative is available. In this review, we aim to provide a background on arbovirus, with a basic description of the main viral classes and the disease they cause, using the Brazilian context to build a comprehensive understanding of their role on a global scale. Subsequently, we offer an exhaustive revision of the diagnostic and therapeutic approaches offered by aptamers against arboviruses. We demonstrate how these promising reagents could help in the clinical diagnosis of this group of viruses, their use in a range of diagnostic formats, from biosensors to serological testing, and we give a short review on the potential approaches for novel aptamer-based antiviral treatment options against different arboviral diseases.


Subject(s)
Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/immunology , Arbovirus Infections/diagnosis , Arboviruses/immunology , Serologic Tests/methods , Aptamers, Nucleotide/isolation & purification , Arbovirus Infections/epidemiology , Arbovirus Infections/immunology , Arbovirus Infections/virology , Brazil/epidemiology , Humans , Public Health , Viral Proteins/immunology
12.
FASEB J ; 34(1): 365-385, 2020 01.
Article in English | MEDLINE | ID: mdl-31914616

ABSTRACT

Structural conversion of cellular prion protein (PrPC) into scrapie PrP (PrPSc) and subsequent aggregation are key events associated with the onset of transmissible spongiform encephalopathies (TSEs). Experimental evidence supports the role of nucleic acids (NAs) in assisting this conversion. Here, we asked whether PrP undergoes liquid-liquid phase separation (LLPS) and if this process is modulated by NAs. To this end, two 25-mer DNA aptamers, A1 and A2, were selected against the globular domain of recombinant murine PrP (rPrP90-231) using SELEX methodology. Multiparametric structural analysis of these aptamers revealed that A1 adopts a hairpin conformation. Aptamer binding caused partial unfolding of rPrP90-231 and modulated its ability to undergo LLPS and fibrillate. In fact, although free rPrP90-231 phase separated into large droplets, aptamer binding increased the number of droplets but noticeably reduced their size. Strikingly, a modified A1 aptamer that does not adopt a hairpin structure induced formation of amyloid fibrils on the surface of the droplets. We show here that PrP undergoes LLPS, and that the PrP interaction with NAs modulates phase separation and promotes PrP fibrillation in a NA structure and concentration-dependent manner. These results shed new light on the roles of NAs in PrP misfolding and TSEs.


Subject(s)
Amyloid/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Liquid-Liquid Extraction/methods , Prion Diseases/pathology , Prion Proteins/chemistry , Prion Proteins/metabolism , Animals , Mice , Nucleic Acid Conformation , Prion Diseases/metabolism , Prion Proteins/isolation & purification , Protein Binding , Protein Conformation , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , SELEX Aptamer Technique
13.
J Immunol Res ; 2020: 8827670, 2020.
Article in English | MEDLINE | ID: mdl-33426096

ABSTRACT

The severe acute respiratory syndrome caused by the new coronavirus (SARS-CoV-2), termed COVID-19, has been highlighted as the most important infectious disease of our time, without a vaccine and treatment available until this moment, with a big impact on health systems worldwide, and with high mortality rates associated with respiratory viral disease. The medical and scientific communities have also been confronted by an urgent need to better understand the mechanism of host-virus interaction aimed at developing therapies and vaccines. Since this viral disease can trigger a strong innate immune response, causing severe damage to the pulmonary tract, immunotherapies have also been explored as a means to verify the immunomodulatory effect and improve clinical outcomes, whilst the comprehensive COVID-19 immunology still remains under investigation. In this review, both cellular and molecular immunopathology as well as hemostatic disorders induced by SARS-CoV-2 are summarized. The immunotherapeutic approaches based on the most recent clinical and nonclinical studies, emphasizing their effects for the treatment of COVID-19, are also addressed. The information presented elucidates helpful insights aiming at filling the knowledge gaps around promising immunotherapies that attempt to control the dysfunction of host factors during the course of this infectious viral disease.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Immunotherapy/methods , Anti-Inflammatory Agents/therapeutic use , Antibodies, Viral/immunology , Antiviral Agents/therapeutic use , B-Lymphocytes/immunology , Humans , Immunization, Passive/methods , Immunologic Memory/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , T-Lymphocytes/immunology , COVID-19 Serotherapy
14.
Anticancer Res ; 39(4): 1859-1867, 2019 04.
Article in English | MEDLINE | ID: mdl-30952726

ABSTRACT

BACKGROUND: Proteins overexpressed in malignant tissues form important targets in the development of targeted therapeutics, and aptamers comprise an important affinity agent for therapy and drug delivery. In this study, aberrantly expressed mucin 1 glycoprotein was investigated as a therapeutic target in a breast cancer model. MATERIALS AND METHODS: In order to determine the feasibility of using an aptamer against mucin 1 (aptA) as carrier of the cytotoxic compound 1,10-phenanthroline to MCF-7 cells, as a potential radiosensitizer, was studied in experiments using circular dichroism and rhodamine labelling by fluorescent microscopy and flow cytometry. RESULTS: 1,10-Phenanthroline can be intercalated within aptA when complexed with Fe(II) ions, with dissociation constant (Kd) of 30 µM. The complex was subsequently capable of binding to and being internalised in MCF-7 breast cancer cells. CONCLUSION: aptA can carry 1,10-phenanthroline to cancer cells specifically and this complex represents a potential target-directed anticancer therapy.


Subject(s)
Aptamers, Nucleotide/metabolism , Breast Neoplasms/metabolism , Drug Carriers , Endocytosis , Mucin-1/metabolism , Phenanthrolines/metabolism , Radiation-Sensitizing Agents/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Feasibility Studies , Female , Ferrous Compounds/chemistry , Humans , MCF-7 Cells , Mucin-1/genetics , Phenanthrolines/chemistry , Phenanthrolines/pharmacology , Radiation-Sensitizing Agents/pharmacology
15.
Pharmaceutics ; 11(12)2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31888119

ABSTRACT

Both aptamers and siRNA technologies have now reached maturity, and both have been validated with a product in the market. However, although pegaptanib reached the market some time ago, there has been a slow process for new aptamers to follow. Today, some 40 aptamers are in the market, but many in combination with siRNAs, in the form of specific delivery agents. This combination offers the potential to explore the high affinity and specificity of aptamers, the silencing power of siRNA, and, at times, the cytotoxicity of chemotherapy molecules in powerful combinations that promise to delivery new and potent therapies. In this review, we report new developments in the field, following up from our previous work, more specifically on the use of aptamers as delivery agents of siRNA in nanoparticle formulations, alone or in combination with chemotherapy, for the treatment of cancer.

16.
Exp Cell Res ; 371(1): 151-161, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30086306

ABSTRACT

Chemoradiation is an established approach in the treatment of advanced oral tongue squamous cell carcinoma (OTSCC), but therapy may cause severe side-effects due to signal interchanges between carcinoma and the tumour microenvironment (TME). In this study, we examined the potential use of our human 3D myoma disc and Myogel models in in vitro chemoradiation studies by analysing the effects of ionizing radiation (IR) and the combined effect of heparanase I (HPSE1) inhibitors and IR on OTSCC cell proliferation, invasion and MMP-2 and - 9 production. Finally, we analysed the long-term effects of IR by studying clones of previously irradiated and invaded HSC-3 cells. We found that in both human uterine leiomyoma-based extracellular matrix models IR inhibited the invasion of HSC-3 cells, but blocking HPSE1 activity combined with IR induced their invasion. Low doses of IR increased MMP expression and initiated epithelial-mesenchymal transition in cells cultured on myoma discs. We conclude that myoma models offer consistent methods for testing human carcinoma cell invasion and phenotypic changes during chemoradiation treatment. In addition, we showed that IR had long-term effects on MMP-2 and - 9, which might elicit different HSC-3 invasion responses when cells were under the challenge of HPSE1 inhibitors and IR.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic , Glucuronidase/antagonists & inhibitors , Leiomyoma/therapy , Uterine Neoplasms/therapy , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/radiation effects , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/radiation effects , Female , Glucuronidase/genetics , Glucuronidase/metabolism , Humans , Leiomyoma/genetics , Leiomyoma/metabolism , Leiomyoma/pathology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Signal Transduction , Tissue Culture Techniques , Tongue/drug effects , Tongue/metabolism , Tongue/pathology , Tongue/radiation effects , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , X-Rays
17.
Monoclon Antib Immunodiagn Immunother ; 36(6): 264-271, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29211630

ABSTRACT

With the recent outbreaks of Zika and Dengue virus infections in various countries worldwide, production of vaccines or diagnostic kits is an urgent public health demand. Production of a monoclonal antibody (mAb) that specifically binds to a common antigen shared by the Flavivirus genus will be necessary for new diagnostic kits or characterization and viral identity tests during vaccine development. This study aimed to cultivate, in serum-free conditions, the 4G2 hybridoma that produces an mAb, which recognizes a shared epitope from the Flavivirus genus. We compared 4G2 hybridoma growth and biochemical profiles between cells cultivated in batch mode over 10 days in roller bottles containing Dulbecco's modified Eagle's medium high glucose containing 10% fetal bovine serum medium or hybridomas directly adapted to Ex-Cell serum-free medium. Cellular parameters such as specific growth rate (µ), maximum cell concentration, specific l-lactate, and glucose and IgG rates were evaluated. Thereafter, we also compared total mAb volumetric productivity, purification yield, and mAb staining of Vero cells infected with Zika and Dengue-2 virus. Direct adaptation to serum-free conditions did not change hybridoma growth rate and mAb production under the conditions tested. Instead, serum-free mAb purification showed a higher yield with no alterations on mAb structure or mAb staining of Zika and Dengue Vero-infected cells.


Subject(s)
Antibodies, Monoclonal/immunology , Hybridomas/cytology , Zika Virus/immunology , Animals , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Batch Cell Culture Techniques/instrumentation , Batch Cell Culture Techniques/methods , Chlorocebus aethiops , Culture Media, Serum-Free , Electrophoresis, Polyacrylamide Gel , Epitopes , Flavivirus/immunology , Mice, Inbred BALB C , Vero Cells
18.
Nanomedicine ; 13(8): 2495-2505, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28842375

ABSTRACT

Mucin 1 (MUC1) is a cell surface protein overexpressed in breast cancer. Mesoporous silica nanoparticles (MSNs) loaded with safranin O, functionalized with aminopropyl groups and gated with the negatively charged MUC1 aptamer have been prepared (S1-apMUC1) for specific targeting and cargo release in tumoral versus non-tumoral cells. Confocal microscopy studies showed that the S1-apMUC1 nanoparticles were internalized in MDA-MB-231 breast cancer cells that overexpress MUC1 receptor with subsequent pore opening and cargo release. Interestingly, the MCF-10-A non-tumorigenic breast epithelial cell line that do not overexpress MUC1, showed reduced (S1-apMUC1) internalization. Negligible internalization was also found for S1-ap nanoparticles that contained a scrambled DNA sequence as gatekeeper. S2-apMUC1 nanoparticles (similar to S1-apMUC1 but loaded with doxorubicin) internalized in MDA-MB-231 cells and induced a remarkable reduction in cell viability. Moreover, S1-apMUC1 nanoparticles radio-labeled with 99mTc (S1-apMUC1-Tc) showed a remarkable tumor targeting in in vivo studies with MDA-MB-231 tumor-bearing Balb/c mice.


Subject(s)
Antineoplastic Agents/administration & dosage , Aptamers, Nucleotide/metabolism , Delayed-Action Preparations/metabolism , Mucin-1/metabolism , Nanoparticles/metabolism , Phenazines/administration & dosage , Silicon Dioxide/metabolism , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Mice, Inbred BALB C , Mucin-1/analysis , Phenazines/therapeutic use , Porosity , Theranostic Nanomedicine
19.
Int J Pharm ; 525(2): 334-342, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28373101

ABSTRACT

Aptamers are oligonucleotide reagents with high affinity and specificity, which among other therapeutic and diagnostic applications have the capability of acting as delivery agents. Thus, aptamers are capable of carrying small molecules, nanoparticles, radiopharmaceuticals or fluorescent agents as well as nucleic acid therapeutics specifically to their target cells. In most cases, the molecules may possess interesting therapeutic properties, but their lack of specificity for a particular cell type, or ability to internalise in such a cell, hinders their clinical development, or cause unwanted side effects. Thus, chemotherapy or radiotherapy agents, famous for their side effects, can be coupled to aptamers for specific delivery. Equally, siRNA have great therapeutic potential and specificity, but one of their shortcomings remain the delivery and internalisation into cells. Various methodologies have been proposed to date, including aptamers, to resolve this problem. Therapeutic or imaging reagents benefit from the adaptability and ease of chemical manipulation of aptamers, their high affinity for the specific marker of a cell type, and their internalisation ability via cell mediated endocytosis. In this review paper, we explore the potential of the aptamers as delivery agents and offer an update on current status and latest advancements.


Subject(s)
Antineoplastic Agents/administration & dosage , Aptamers, Nucleotide/chemistry , Neoplasms/therapy , RNA, Small Interfering/administration & dosage , Radiopharmaceuticals/administration & dosage , Humans , Nanoparticles/chemistry
20.
Artif Cells Nanomed Biotechnol ; 45(3): 598-601, 2017 May.
Article in English | MEDLINE | ID: mdl-28211299

ABSTRACT

The use of monoclonal antibodies and aptamers is growing every single day, as the use of nanoparticle systems. Although most of the products are under investigation, there are a few commercialized products available at the market, for human consume. In this study, we have compared three formulations (aptamer anti-MUC1, monoclonal antibody - Trastuzumab and monoclonal antibodies nanoparticles - PLA/PVA/MMT trastuzumab) to identify their profile as also to understand their behavior into an alive biological system. In this direction the radiolabeling of the products were done and they were all tested in animals (in vivo) in two conditions: healthy rats and breast cancer induced animals. The results showed that the nanoparticle has the better biodistribution profile, followed by the aptamer. We conclude that more studies and a global effort to elucidate the biological behavior of drugs and especially nano-drugs are necessary.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Aptamers, Peptide/pharmacokinetics , Mammary Glands, Animal/diagnostic imaging , Mammary Neoplasms, Experimental/diagnostic imaging , Radionuclide Imaging/methods , Trastuzumab/pharmacokinetics , Animals , Antineoplastic Agents/chemistry , Aptamers, Peptide/chemistry , Female , Humans , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mucin-1/chemistry , Mucin-1/metabolism , Nanoparticles/chemistry , Nanoparticles/metabolism , Polyesters/chemistry , Polyvinyl Alcohol/chemistry , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Wistar , Staining and Labeling/methods , Technetium/chemistry , Technetium/pharmacokinetics , Tissue Distribution , Trastuzumab/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...