Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Med Imaging ; PP2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478452

ABSTRACT

State-space modeling (SSM) provides a general framework for many image reconstruction tasks. Error in a priori physiological knowledge of the imaging physics, can bring incorrectness to solutions. Modern deep-learning approaches show great promise but lack interpretability and rely on large amounts of labeled data. In this paper, we present a novel hybrid SSM framework for electrocardiographic imaging (ECGI) to leverage the advantage of state-space formulations in data-driven learning. We first leverage the physics-based forward operator to supervise the learning. We then introduce neural modeling of the transition function and the associated Bayesian filtering strategy. We applied the hybrid SSM framework to reconstruct electrical activity on the heart surface from body-surface potentials. In unsupervised settings of both in-silico and in-vivo data without cardiac electrical activity as the ground truth to supervise the learning, we demonstrated improved ECGI performances of the hybrid SSM framework trained from a small number of ECG observations in comparison to the fixed SSM. We further demonstrated that, when in-silico simulation data becomes available, mixed supervised and unsupervised training of the hybrid SSM achieved a further 40.6% and 45.6% improvements, respectively, in comparison to traditional ECGI baselines and supervised data-driven ECGI baselines for localizing the origin of ventricular activations in real data.

2.
Comput Biol Med ; 126: 104013, 2020 11.
Article in English | MEDLINE | ID: mdl-33002841

ABSTRACT

BACKGROUND: Machine learning models may help localize the site of origin of ventricular tachycardia (VT) using 12-lead electrocardiograms. However, population-based models suffer from inter-subject anatomical variations within ECG data, while patient-specific models face the open challenge of what pacing data to collect for training. METHODS: This study presents and validates the first hybrid model that combines population and patient-specific machine learning for rapid "computer-guided pace-mapping". A population-based deep learning model was first trained offline to disentangle inter-subject variations and regionalize the site of VT origin. Given a new patient with a target VT, an on-line patient-specific model -- after being initialized by the population-based prediction -- was then built in real time by actively suggesting where to pace next and improving the prediction with each added pacing data, progressively guiding pace-mapping towards the site of VT origin. RESULTS: The population model was trained on pace-mapping data from 38 patients and the patient-specific model was subsequently tuned on one patient. The resulting hybrid model was tested on a separate cohort of eight patients in localizing 1) 193 LV endocardial pacing sites, and 2) nine VTs with clinically determined exit sites. The hybrid model achieved a localization error of 5.3 ± 2.6 mm using 5.4 ± 2.5 pacing sites in localizing LV pacing sites, achieving a significantly higher accuracy with a significantly smaller amount of training sites in comparison to models without active guidance. CONCLUSION: The presented hybrid model has the potential to assist rapid pace-mapping of interventional targets in VT.


Subject(s)
Tachycardia, Ventricular , Electrocardiography , Humans , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...