Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 14(4): 274, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072394

ABSTRACT

The transcription factor p63 shares a high sequence identity with the tumour suppressor p53 which manifests itself in high structural similarity and preference for DNA sequences. Mutations in the DNA binding domain (DBD) of p53 have been studied in great detail, enabling a general mechanism-based classification. In this study we provide a detailed investigation of all currently known mutations in the p63 DBD, which are associated with developmental syndromes, by measuring their impact on transcriptional activity, DNA binding affinity, zinc binding capacity and thermodynamic stability. Some of the mutations we have further characterized with respect to their ability to convert human dermal fibroblasts into induced keratinocytes. Here we propose a classification of the p63 DBD mutations based on the four different mechanisms of DNA binding impairment which we identified: direct DNA contact, zinc finger region, H2 region, and dimer interface mutations. The data also demonstrate that, in contrast to p53 cancer mutations, no p63 mutation induces global unfolding and subsequent aggregation of the domain. The dimer interface mutations that affect the DNA binding affinity by disturbing the interaction between the individual DBDs retain partial DNA binding capacity which correlates with a milder patient phenotype.


Subject(s)
Tumor Suppressor Protein p53 , Tumor Suppressor Proteins , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/metabolism , Protein Binding/genetics , Mutation/genetics , DNA/metabolism , Binding Sites
2.
J Clin Invest ; 132(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-34905516

ABSTRACT

Desmoglein 1 (Dsg1) is a cadherin restricted to stratified tissues of terrestrial vertebrates, which serve as essential physical and immune barriers. Dsg1 loss-of-function mutations in humans result in skin lesions and multiple allergies, and isolated patient keratinocytes exhibit increased proallergic cytokine expression. However, the mechanism by which genetic deficiency of Dsg1 causes chronic inflammation is unknown. To determine the systemic response to Dsg1 loss, we deleted the 3 tandem Dsg1 genes in mice. Whole transcriptome analysis of embryonic Dsg1-/- skin showed a delay in expression of adhesion/differentiation/keratinization genes at E17.5, a subset of which recovered or increased by E18.5. Comparing epidermal transcriptomes from Dsg1-deficient mice and humans revealed a shared IL-17-skewed inflammatory signature. Although the impaired intercellular adhesion observed in Dsg1-/- mice resembles that resulting from anti-Dsg1 pemphigus foliaceus antibodies, pemphigus skin lesions exhibit a weaker IL-17 signature. Consistent with the clinical importance of these findings, treatment of 2 Dsg1-deficient patients with an IL-12/IL-23 antagonist originally developed for psoriasis resulted in improvement of skin lesions. Thus, beyond impairing the physical barrier, loss of Dsg1 function through gene mutation results in a psoriatic-like inflammatory signature before birth, and treatment with a targeted therapy significantly improved skin lesions in patients.


Subject(s)
Desmoglein 1/immunology , Desmosomes/immunology , Keratinocytes/immunology , Pemphigus/immunology , Th17 Cells/immunology , Animals , Desmoglein 1/genetics , Desmosomes/genetics , Mice , Pemphigus/genetics
3.
Nucleic Acids Res ; 49(7): 3748-3763, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33764436

ABSTRACT

Epigenetic regulation of cell and tissue function requires the coordinated action of transcription factors. However, their combinatorial activities during regeneration remain largely unexplored. Here, we discover an unexpected interaction between the cytoprotective transcription factor NRF2 and p63- a key player in epithelial morphogenesis. Chromatin immunoprecipitation combined with sequencing and reporter assays identifies enhancers and promoters that are simultaneously activated by NRF2 and p63 in human keratinocytes. Modeling of p63 and NRF2 binding to nucleosomal DNA suggests their chromatin-assisted interaction. Pharmacological and genetic activation of NRF2 increases NRF2-p63 binding to enhancers and promotes keratinocyte proliferation, which involves the common NRF2-p63 target cyclin-dependent kinase 12. These results unravel a collaborative function of NRF2 and p63 in the control of epidermal renewal and suggest their combined activation as a strategy to promote repair of human skin and other stratified epithelia.


Subject(s)
Keratinocytes , NF-E2-Related Factor 2/physiology , Skin , Transcription Factors/physiology , Tumor Suppressor Proteins/physiology , Animals , Cell Proliferation , Cells, Cultured , Cyclin-Dependent Kinases/metabolism , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Mice , Skin/cytology , Skin/metabolism
4.
Sci Rep ; 11(1): 2941, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536486

ABSTRACT

In recent months, Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the world. COVID-19 patients show mild, moderate or severe symptoms with the latter ones requiring access to specialized intensive care. SARS-CoV-2 infections, pathogenesis and progression have not been clearly elucidated yet, thus forcing the development of many complementary approaches to identify candidate cellular pathways involved in disease progression. Host lipids play a critical role in the virus life, being the double-membrane vesicles a key factor in coronavirus replication. Moreover, lipid biogenesis pathways affect receptor-mediated virus entry at the endosomal cell surface and modulate virus propagation. In this study, targeted lipidomic analysis coupled with proinflammatory cytokines and alarmins measurement were carried out in serum of COVID-19 patients characterized by different severity degree. Serum IL-26, a cytokine involved in IL-17 pathway, TSLP and adiponectin were measured and correlated to lipid COVID-19 patient profiles. These results could be important for the classification of the COVID-19 disease and the identification of therapeutic targets.


Subject(s)
COVID-19/pathology , Lipid Metabolism/physiology , Alarmins/blood , COVID-19/virology , Cytokines/blood , Discriminant Analysis , Female , Humans , Least-Squares Analysis , Lipids/blood , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index
5.
Cancers (Basel) ; 13(3)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572532

ABSTRACT

The p63 gene encodes a master regulator of epidermal commitment, development, and differentiation. Heterozygous mutations in the DNA binding domain cause Ectrodactyly, Ectodermal Dysplasia, characterized by limb deformation, cleft lip/palate, and ectodermal dysplasia while mutations in in the C-terminal domain of the α-isoform cause Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) syndrome, a life-threatening disorder characterized by skin fragility, severe, long-lasting skin erosions, and cleft lip/palate. The molecular disease mechanisms of these syndromes have recently become elucidated and have enhanced our understanding of the role of p63 in epidermal development. Here we review the molecular cause and functional consequences of these p63-mutations for skin development and discuss the consequences of p63 mutations for female fertility.

6.
EMBO Rep ; 22(3): e52152, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33554445

ABSTRACT

"Flash forward genetics" refers to a genetic approach based on the functional interaction of a given factor with unknown partner(s) converging on shared targets across evolutionary boundaries. A study by Li et al (2021), published in this issue of EMBO Reports, illustrates the innovative potential of the approach. The authors applied it to identify interacting factors for FOXN1, a mammalian transcription factor with a highly specialized function in hair follicle morphogenesis and thymus. The authors express FOXN1 in the Drosophila eye to perform an unbiased genetic screen in a totally heterologous system. In a remarkable tour de force, the authors identify and characterize a factor so far known for its ubiquitous function in transcription elongation, AFF4. Li et al show that AFF4 plays also a specific role in hair follicle and thymus development in the mouse overlapping with that of FOXN1.


Subject(s)
Forkhead Transcription Factors , Hair Follicle , Animals , Biological Evolution , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Hair Follicle/metabolism , Mice , Mice, Nude
7.
Int J Mol Sci ; 21(2)2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31963474

ABSTRACT

Early events of basal cell carcinoma (BCC) tumorigenesis are triggered by inappropriate activation of SHH signaling, via the loss of Patched1 (Ptch1) or by activating mutations of Smoothened (Smo). TBX1 is a key regulator of pharyngeal development, mainly through expression in multipotent progenitor cells of the cardiopharyngeal lineage. This transcription factor is connected to several major signaling systems, such as FGF, WNT, and SHH, and it has been linked to cell proliferation and to the regulation of cell shape and cell dynamics. Here, we show that TBX1 was expressed in all of the 51 BCC samples that we have tested, while in healthy human skin it was only expressed in the hair follicle. Signal intensity and distribution was heterogeneous among tumor samples. Experiments performed on a cellular model of mouse BCC showed that Tbx1 is downstream to GLI2, a factor in the SHH signaling, and that, in turn, it regulates the expression of Dvl2, which encodes an adaptor protein that is necessary for the transduction of WNT signaling. Consistently, Tbx1 depletion in the cellular model significantly reduced cell migration. These results suggest that TBX1 is part of a core transcription network that promotes BCC tumorigenesis.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Basal Cell/pathology , Dishevelled Proteins/metabolism , Nuclear Proteins/metabolism , Skin Neoplasms/pathology , T-Box Domain Proteins/metabolism , Zinc Finger Protein Gli2/metabolism , Adult , Aged , Aged, 80 and over , Animals , Biomarkers, Tumor/genetics , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/metabolism , Case-Control Studies , Cell Proliferation , Dishevelled Proteins/genetics , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Middle Aged , Nuclear Proteins/genetics , Prognosis , Retrospective Studies , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , T-Box Domain Proteins/genetics , Tumor Cells, Cultured , Zinc Finger Protein Gli2/genetics
9.
Cell Death Dis ; 11(1): 30, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31949132

ABSTRACT

P63 is a major transcription factor regulating skin development and homeostasis. It controls many genes involved in cell proliferation, adhesion, and early differentiation. P63 is mutated in several rare syndromes called p63-related ectodermal dysplasia syndromes (ED). The main forms are EEC and AEC syndromes due to p63 missense mutations on the DBD and SAM domains, respectively. ED patients display many developmental defects, including ectrodactyly, clef/lip palate, and ectodermal dysplasia, while AEC patients suffer from severe skin erosions that not always heal. We have previously showed that ED-derived iPSC display altered epidermal commitment. P63 belongs to the p53 gene family sharing similar structural domains. We found that ED-iPSC epidermal commitment can be rescued by a p53-reactivating compounds called PRIMA-1MET, also named APR-246 and currently used in anticancer clinical trials. Here, we established primary epidermal culture from two AEC children (S.F. and Y.M.) suffering from persistent skin erosions at age of 9 and 15, respectively. These patients carry missense mutations on the SAM domain (I576T and I537T). We found that primary keratinocytes (KCs) isolated from these AEC patients underwent altered epidermal differentiation that was rescued by PRIMA-1MET treatment. It prompted us to formulate the compound onto a cream that was topically applied on the right hand of one patient and on the scalp of the second patient. In both cases, the daily treatment allowed re-epithelialization of the eroded skin and a drastic loss of pain after few weeks, improving quality of life. Normally, mutant p63 exerts a dominant-negative effect, mainly through the formation of aggregate with WT p63 and p73. PRIMA-1MET did not reduce protein aggregation while enhancing cell differentiation, suggesting that PRIMA-1MET targets cell differentiation and not p63 activity directly. In conclusion, we propose that repurposing of the antitumoral PRIMA-1MET compound could become a general treatment of AEC skin erosions.


Subject(s)
Ectodermal Dysplasia/drug therapy , Ectodermal Dysplasia/pathology , Epidermis/pathology , Quinuclidines/therapeutic use , Administration, Topical , Cell Differentiation/drug effects , Ectodermal Dysplasia/genetics , Genotype , Humans , Keratinocytes/drug effects , Keratinocytes/pathology , Phenotype , Protein Aggregates/drug effects , Quinuclidines/administration & dosage , Quinuclidines/pharmacology , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
11.
Nat Commun ; 10(1): 5410, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31776338

ABSTRACT

Epithelial tumor progression often involves epithelial-mesenchymal transition (EMT). We report that increased intracellular levels of thyroid hormone (TH) promote the EMT and malignant evolution of squamous cell carcinoma (SCC) cells. TH induces the EMT by transcriptionally up-regulating ZEB-1, mesenchymal genes and metalloproteases and suppresses E-cadherin expression. Accordingly, in human SCC, elevated D2 (the T3-producing enzyme) correlates with tumor grade and is associated with an increased risk of postsurgical relapse and shorter disease-free survival. These data provide the first in vivo demonstration that TH and its activating enzyme, D2, play an effective role not only in the EMT but also in the entire neoplastic cascade starting from tumor formation up to metastatic transformation, and supports the concept that TH is an EMT promoter. Our studies indicate that tumor progression relies on precise T3 availability, suggesting that pharmacological inactivation of D2 and TH signaling may suppress the metastatic proclivity of SCC.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Thyroid Hormones/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism , Adult , Aged , Aged, 80 and over , Animals , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition , Humans , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Mice, Transgenic , Middle Aged , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Zinc Finger E-box-Binding Homeobox 1/genetics , Iodothyronine Deiodinase Type II
12.
Sci Rep ; 9(1): 4843, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30890716

ABSTRACT

Natural selection acts on genetic variants by increasing the frequency of alleles responsible for a cellular function that is favorable in a certain environment. In a previous genome-wide scan for positive selection in contemporary humans, we identified a signal of positive selection in European and Asians at the genetic variant rs10180970. The variant is located in the second intron of the ABCA12 gene, which is implicated in the lipid barrier formation and down-regulated by UVB radiation. We studied the signal of selection in the genomic region surrounding rs10180970 in a larger dataset that includes DNA sequences from ancient samples. We also investigated the functional consequences of gene expression of the alleles of rs10180970 and another genetic variant in its proximity in healthy volunteers exposed to similar UV radiation. We confirmed the selection signal and refine its location that extends over 35 kb and includes the first intron, the first two exons and the transcription starting site of ABCA12. We found no obvious effect of rs10180970 alleles on ABCA12 gene expression. We reconstructed the trajectory of the T allele over the last 80,000 years to discover that it was specific to H. sapiens and present in non-Africans 45,000 years ago.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Asian People/genetics , Polymorphism, Single Nucleotide/genetics , Selection, Genetic/genetics , White People/genetics , Alleles , Gene Expression/genetics , Gene Frequency/genetics , Haplotypes/genetics , Humans
13.
Methods Mol Biol ; 1879: 119-132, 2019.
Article in English | MEDLINE | ID: mdl-29582373

ABSTRACT

The interfollicular epidermis regenerates from a heterogeneous population of basal cells undergoing either self-renewal or terminal differentiation, thereby balancing cell loss in tissue turnover or in wound repair. In this chapter, we describe a reliable and simple method for isolating interfollicular epithelial stem cells from the skin of newborn mice or from tail and ear skin of adult mice using fluorescence-activated cell sorting (FACS). We also provide a detailed protocol for culturing interfollicular epidermal stem cells and to assess their proliferative potential and self-renewing ability. These techniques are useful for directly evaluating epidermal stem cell function in normal mice under different conditions or in genetically modified mouse models.


Subject(s)
Adult Stem Cells/cytology , Epidermal Cells/cytology , Epidermis/physiology , Skin/cytology , Stem Cells/cytology , Animals , Cell Differentiation/physiology , Cells, Cultured , Flow Cytometry/methods , Keratinocytes/cytology , Mice , Mice, Inbred C57BL
14.
J Investig Dermatol Symp Proc ; 19(2): S98-S100, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30471766

ABSTRACT

The p53 family member p63 is a master regulator of gene expression in stratified epithelia, such as the epidermis. One of the main functions of p63 is to sustain mechanical resistance, positively regulating several epidermal genes involved in cell-matrix adhesion and cell-cell adhesion (Ferone et al., 2015).

15.
Sci Signal ; 11(551)2018 10 09.
Article in English | MEDLINE | ID: mdl-30301786

ABSTRACT

The molecular circuitry directing tissue development and homeostasis is hardwired by genetic programs but may also be subject to fine-tuning or major modification by environmental conditions. It remains unclear whether such malleability is at work-particularly in tissues directly in contact with the environment-and contributes to their optimal maintenance and resilience. The protein kinase p38α is activated by physiological cues that signal tissue damage and neoplastic transformation. Here, we found that p38α phosphorylated and thereby destabilized p63, a transcription factor essential for epidermal development. Through this regulatory mechanism, p38α limited the frequency of keratinocytes with stem cell properties and tumorigenic potential. Correspondingly, epidermal loss of p38α expression or activity promoted or correlated with carcinogenesis in mouse and human skin, respectively. Genetic mouse models revealed a tumorigenic mechanism from p38α loss through p63-mediated suppression of the matrix metalloprotease MMP13. These findings illustrate a previously uncharacterized epidermal tumor-suppressive mechanism in which stress-activated signaling induces the contraction of stem cell-like keratinocyte pools.


Subject(s)
Carcinogenesis/metabolism , Keratinocytes/cytology , Mitogen-Activated Protein Kinase 14/metabolism , Skin Neoplasms/metabolism , Stem Cells/cytology , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Carcinoma, Squamous Cell/metabolism , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic , Epidermal Cells/cytology , Epidermis/metabolism , Genes, Tumor Suppressor , Homeostasis , Humans , Keratosis, Actinic/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Phenotype , Protein Kinases/metabolism , Signal Transduction
16.
Proc Natl Acad Sci U S A ; 115(5): E906-E915, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29339502

ABSTRACT

The p63 gene encodes a master regulator of epidermal commitment, development, and differentiation. Heterozygous mutations in the C-terminal domain of the p63 gene can cause ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome, a life-threatening disorder characterized by skin fragility and severe, long-lasting skin erosions. Despite deep knowledge of p63 functions, little is known about mechanisms underlying disease pathology and possible treatments. Here, we show that multiple AEC-associated p63 mutations, but not those causative of other diseases, lead to thermodynamic protein destabilization, misfolding, and aggregation, similar to the known p53 gain-of-function mutants found in cancer. AEC mutant proteins exhibit impaired DNA binding and transcriptional activity, leading to dominant negative effects due to coaggregation with wild-type p63 and p73. Importantly, p63 aggregation occurs also in a conditional knock-in mouse model for the disorder, in which the misfolded p63 mutant protein leads to severe epidermal defects. Variants of p63 that abolish aggregation of the mutant proteins are able to rescue p63's transcriptional function in reporter assays as well as in a human fibroblast-to-keratinocyte conversion assay. Our studies reveal that AEC syndrome is a protein aggregation disorder and opens avenues for therapeutic intervention.


Subject(s)
Cleft Lip/genetics , Cleft Palate/genetics , Eye Abnormalities/genetics , Phosphoproteins/genetics , Skin/pathology , Trans-Activators/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Animals , Ectoderm/metabolism , Frameshift Mutation , HEK293 Cells , Heterozygote , Humans , Mice , Mutation , Mutation, Missense , Protein Binding , Protein Denaturation , Transcription, Genetic
17.
PLoS Genet ; 13(6): e1006828, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28604778

ABSTRACT

Cleft palate is a common congenital disorder that affects up to 1 in 2500 live births and results in considerable morbidity to affected individuals and their families. The aetiology of cleft palate is complex with both genetic and environmental factors implicated. Mutations in the transcription factor p63 are one of the major individual causes of cleft palate; however, the gene regulatory networks in which p63 functions remain only partially characterized. Our findings demonstrate that p63 functions as an essential regulatory molecule in the spatio-temporal control of palatal epithelial cell fate to ensure appropriate fusion of the palatal shelves. Initially, p63 induces periderm formation and controls its subsequent maintenance to prevent premature adhesion between adhesion-competent, intra-oral epithelia. Subsequently, TGFß3-induced down-regulation of p63 in the medial edge epithelia of the palatal shelves is a pre-requisite for palatal fusion by facilitating periderm migration from, and reducing the proliferative potential of, the midline epithelial seam thereby preventing cleft palate.


Subject(s)
Cleft Palate/genetics , Gene Regulatory Networks/genetics , Phosphoproteins/genetics , Trans-Activators/genetics , Transforming Growth Factor beta3/genetics , Animals , Cell Movement/genetics , Cell Proliferation/genetics , Cleft Palate/physiopathology , Disease Models, Animal , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Humans , Mice , Mutation , Phosphoproteins/biosynthesis , Signal Transduction/genetics , Trans-Activators/biosynthesis
18.
J Invest Dermatol ; 137(3): e21-e26, 2017 03.
Article in English | MEDLINE | ID: mdl-28235445

ABSTRACT

Long noncoding RNAs (lncRNAs) are a functionally heterogeneous and abundant class of RNAs acting in all cellular compartments that can form complexes with DNA, RNA, and proteins. Recent advances in high-throughput sequencing and techniques leading to the identification of DNA-RNA, RNA-RNA, and RNA-protein complexes have allowed the functional characterization of a small set of lncRNAs. However, characterization of the full repertoire of lncRNAs playing essential roles in a number of normal and dysfunctional cellular processes remains an important goal for future studies. Here we describe the most commonly used techniques to identify lncRNAs, and to characterize their biological functions. In addition, we provide examples of these techniques applied to cutaneous research in healthy skin, that is, epidermal differentiation, and in diseases such as cutaneous squamous cell carcinomas and psoriasis. As with protein-coding RNA transcripts, lncRNAs are differentially regulated in disease, and can serve as novel biomarkers for the diagnosis and prognosis of skin diseases.


Subject(s)
Dermatology/trends , Gene Expression Profiling , RNA, Long Noncoding/genetics , Sequence Analysis, RNA , Skin Physiological Phenomena , Animals , Biomarkers/metabolism , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization, Fluorescence , Protein Interaction Mapping , Skin Neoplasms/diagnosis , Skin Neoplasms/metabolism
19.
J Invest Dermatol ; 137(2): 280-281, 2017 02.
Article in English | MEDLINE | ID: mdl-28110711

ABSTRACT

The p63 gene is often overexpressed in squamous cell carcinomas; however, how its overexpression contributes to tumor formation and expansion is still incompletely understood. Devos et al. report the development of a versatile mouse model demonstrating that p63 facilitates squamous cell carcinoma formation in skin and providing an excellent tool to dissect the relevance of its downstream signaling pathways in tumorigenesis.


Subject(s)
Transcription Factors , Tumor Suppressor Proteins , Animals , Biomarkers, Tumor , Carcinoma, Squamous Cell , DNA-Binding Proteins , Immunohistochemistry , Phosphoproteins , Stem Cells , Trans-Activators
20.
J Clin Invest ; 126(6): 2308-20, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27159391

ABSTRACT

The thyroid hormone-inactivating (TH-inactivating) enzyme type 3 iodothyronine deiodinase (D3) is an oncofetal protein that is rarely expressed in adult life but has been shown to be reactivated in the context of proliferation and neoplasms. D3 terminates TH action within the tumor microenvironment, thereby enhancing cancer cell proliferation. However, the pathological role of D3 and the contribution of TH metabolism in cancer have yet to be fully explored. Here, we describe a reciprocal regulation between TH action and the cancer-associated microRNA-21 (miR21) in basal cell carcinoma (BCC) skin tumors. We found that, besides being negatively regulated by TH at the transcriptional level, miR21 attenuates the TH signal by increasing D3 levels. The ability of miR21 to positively regulate D3 was mediated by the tumor suppressor gene GRHL3, a hitherto unrecognized D3 transcriptional inhibitor. Finally, in a BCC mouse model, keratinocyte-specific D3 depletion markedly reduced tumor growth. Together, our results establish TH action as a critical hub of multiple oncogenic pathways and provide functional and mechanistic evidence of the involvement of TH metabolism in BCC tumorigenesis. Moreover, our results identify a miR21/GRHL3/D3 axis that reduces TH in the tumor microenvironment and has potential to be targeted as a therapeutic approach to BCC.


Subject(s)
Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/metabolism , Hedgehog Proteins/metabolism , MicroRNAs/genetics , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Thyroid Hormones/metabolism , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinoma, Basal Cell/etiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Heterografts , Humans , Iodide Peroxidase/deficiency , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Keratinocytes/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Nude , MicroRNAs/metabolism , Signal Transduction , Skin Neoplasms/etiology , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Cells, Cultured , Tumor Microenvironment/genetics , Tumor Microenvironment/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...