Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(11): e0187217, 2017.
Article in English | MEDLINE | ID: mdl-29095858

ABSTRACT

Krabbe disease is a fatal rare inherited lipid storage disorder affecting 1:100,000 births. This illness is caused by mutations in the galc gene encoding for the enzyme galactosylceramidase (GALC). Dysfunction of GALC has been linked to the toxic build-up of the galactolipid, galactosylsphingosine (psychosine), which induces cell death of oligodendrocytes. Previous studies show that phospholipase A2 (PLA2) may play a role in psychosine induce cell death. Here, we demonstrate that non-selective inhibition of cPLA2/sPLA2 and selective inhibition of cPLA2, but not sPLA2, also attenuates psychosine-induced cell death of human astrocytes. This study shows that extracellular calcium is required for psychosine induced cell death, but intracellular calcium release, reactive oxygen species or release of soluble factors are not involved. These findings suggest a cell autonomous effect, at least in human astrocytes. Supporting a role for PLA2 in psychosine-induced cell death of oligodendrocytes and astrocytes, the results show inhibition of PLA2 attenuates psychosine-induced decrease in the expression of astrocyte marker vimentin as well as myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG) and the neuronal marker SMI-32 in organotypic slice cultures. These findings provide further mechanistic details of psychosine-induced death of glia and suggest a role for PLA2 in the process. This work also supports the proposal that novel drugs for Krabbe disease may require testing on astrocytes as well as oligodendrocytes for more holistic prediction of pre-clinical and clinical efficacy.


Subject(s)
Astrocytes/physiology , Demyelinating Diseases , Neurons/pathology , Phospholipases A2/physiology , Psychosine/physiology , Animals , Cells, Cultured , Enzyme Inhibitors/pharmacology , Humans , Mice , Phospholipases A2/drug effects
2.
J Cell Sci ; 128(4): 706-16, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25512335

ABSTRACT

Ent3 and Ent5 are yeast epsin N-terminal homology (ENTH) domain-containing proteins involved in protein trafficking between the Golgi and late endosomes. They interact with clathrin, clathrin adaptors at the Golgi (AP-1 and GGA) and different SNAREs (Vti1, Snc1, Pep12 and Syn8) required for vesicular transport at the Golgi and endosomes. To better understand the role of these epsins in membrane trafficking, we performed a protein-protein interaction screen. We identified Btn3 (also known as Tda3), a putative oxidoreductase, as a new partner of both Ent3 and Ent5. Btn3 is a negative regulator of the Batten-disease-linked protein Btn2 involved in the retrieval of specific SNAREs (Vti1, Snc1, Tlg1 and Tlg2) from the late endosome to the Golgi. We show that Btn3 endosomal localization depends on the epsins Ent3 and Ent5. We demonstrated that in btn3Δ mutant cells, endosomal sorting of ubiquitylated cargos and endosomal recycling of the Snc1 SNARE are delayed. We thus propose that Btn3 regulates the sorting function of two adaptors for SNARE proteins, the epsin Ent3 and the Batten-disease-linked protein Btn2.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Amino Acid Transport Systems/metabolism , Endosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Vesicular Transport Proteins/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Amino Acid Transport Systems/genetics , Golgi Apparatus/metabolism , Protein Array Analysis , Protein Interaction Mapping , Protein Transport/physiology , SNARE Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Vesicular Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...