Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 9739, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26084605

ABSTRACT

Fermi-surface-free superconductivity arises when the superconducting order pulls down spectral weight from a band that is completely above the Fermi energy in the normal state. We show that this can arise in hole-doped cuprates when a competing order causes a reconstruction of the Fermi surface. The change in Fermi surface topology is accompanied by a characteristic rise in the spectral weight. Our results support the presence of a trisected superconducting dome, and suggest that superconductivity is responsible for stabilizing the (π,π) magnetic order at higher doping.

2.
Science ; 344(6184): 608-11, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24812396

ABSTRACT

The unclear relationship between cuprate superconductivity and the pseudogap state remains an impediment to understanding the high transition temperature (T(c)) superconducting mechanism. Here, we used magnetic field-dependent scanning tunneling microscopy to provide phase-sensitive proof that d-wave superconductivity coexists with the pseudogap on the antinodal Fermi surface of an overdoped cuprate. Furthermore, by tracking the hole-doping (p) dependence of the quasi-particle interference pattern within a single bismuth-based cuprate family, we observed a Fermi surface reconstruction slightly below optimal doping, indicating a zero-field quantum phase transition in notable proximity to the maximum superconducting T(c). Surprisingly, this major reorganization of the system's underlying electronic structure has no effect on the smoothly evolving pseudogap.

3.
ACS Nano ; 3(12): 3987-92, 2009 Dec 22.
Article in English | MEDLINE | ID: mdl-19947582

ABSTRACT

We report on the fabrication and optical characterization of dense and ordered arrays of metal nanoparticles. The metal arrays are produced by reducing metal salts in block copolymer (BCP) templates made by solvent annealing of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) or poly(styrene-b-ethylene oxide) (PS-b-PEO) diblock copolymer thin films in mixed solvents. The gold and gold/silver composite nanoparticle arrays show characteristic surface plasmon resonances in the visible wavelength range. The patterning can be applied over large areas onto various substrates. We demonstrate that these metal nanoparticle arrays on metal thin films interact with surface plasmon polaritons (SPPs) that propagate at the film/nanoparticle interface and, therefore, modify the dispersion relation of the SPPs.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Polystyrenes/chemistry , Polyvinyls/chemistry , Surface Plasmon Resonance/methods , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Polyethylene Glycols , Rubber , Sulfides , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...