Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Pestic Biochem Physiol ; 198: 105738, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225085

ABSTRACT

This study aimed to evaluate the effects of propiconazole on the tubificid segmented worm, Tubifex tubifex. The animals were exposed to various concentrations of propiconazole for 96 h to assess the acute effect of this fungicide and for subacute level animals were exposed for 14 days with 10% and 20% of the 96 h LC50 value (0.211 and 0.422 mg/l, respectively). The 96 h LC50 value was determined to be 2.110 mg/l, and sublethal propiconazole concentrations caused significant changes in the oxidative stress enzymes. When compared to control organisms, superoxide dismutase (SOD) and catalase (CAT) activity first decreases and then significantly increases on days 7 and 14. However, GST activity decreases and MDA concentration rises in a concentration- and time-dependent manner throughout the exposure period. In addition, the impacts of propiconazole on Tubifex tubifex were characterized and depicted using a correlation matrix and an integrated biomarker response (IBR) assessment. These findings suggest that exposure to this fungicide distorts the survivability and behavioral response in Tubifex tubifex at the acute level. In addition, it modulates changes in oxidative stress enzymes at the sublethal level. Furthermore, the species sensitivity distribution curve indicates that this tubificid worm has a high risk of survival in the presence of the fungicide propiconazole in aquatic ecosystems.


Subject(s)
Fungicides, Industrial , Triazoles , Water Pollutants, Chemical , Animals , Antioxidants/pharmacology , Fungicides, Industrial/toxicity , Sewage , Ecosystem , Oxidative Stress , Water Pollutants, Chemical/pharmacology
2.
Environ Sci Pollut Res Int ; 29(31): 47462-47487, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35182337

ABSTRACT

The present field study evaluates the health status of the catfish Clarias batrachus reared in coal mine effluent (CME)-fed pond water at Rajrappa mining complex using biochemical, haematological and histopathological parameters. Simultaneously, risk assessment along with recovery response of the CME intoxicated fish following their treatment with CME-free freshwater was also studied. The CME-fed pond water fish revealed significant decrease in biomolecules concentrations and considerable increase in activities of several enzymes along with metallothionein level as compared to control. The impaired regulation of metabolic function was also revealed by blood parameters showing significant decrease in haemoglobin content (8.78 ± 0.344 g/100 mL) and red blood cells count (1.77 ± 0.12 × 106 mm3) while substantial elevation in white blood cells (187.13 ± 9.78 × 103 mm3). The histopathological study also confirmed the changes including hypertrophy of club cells of skin, swelling of secondary lamella of gills, extensive fibrosis in liver and glomerular shrinkage with increased Bowman's space in kidney. Potential health risk assessments based on estimated daily intake and target hazard quotient indicated health risks associated with the consumption of such fishes. The CME-contaminated fish when transferred to CME-free freshwater exhibited decreased metal content accompanied by eventual recovery response as evident by retrieval in biochemical and haematological parameters. Withdrawal study also revealed restoration in the activity of different marker enzymes in fish tissues including blood as well as recovery in their cellular architecture. The results of the present study validate the depuration process as an effective practice for detoxification of fish contaminated with effluent.


Subject(s)
Catfishes , Health Status , Ponds , Animals , Catfishes/metabolism , Coal Mining , Ponds/chemistry , Risk Assessment
3.
Acta Histochem ; 124(2): 151848, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35033935

ABSTRACT

In recent studies, fish are heavily used as biomarkers of aquatic pollution, and heavy metals are among the main contributors to water pollution. In the present study, we investigated histopathological changes along with alterations in localization and activity of enzymes alkaline phosphatase (ALP), acid phosphatase (ACP), catalase (CAT), peroxidase (PER) and Na+/K+-ATPase in the gill tissues of Indian stinging catfish Heteropneustes fossilis exposed to two different concentrations (0.4 and 4 mg/L) of lead nitrate for 15 days. Histopathological examination of gill tissues revealed hypertrophy and swelling of epithelial cells, the fusion of epithelium of gill filaments and secondary lamellae, and alteration of secondary lamellae structure. Biochemical assays and histochemical localization show a pronounced effect on enzyme alkaline phosphatase activity and acid phosphatase in the gills of both groups of treated groups. In contrast, a significant decrease was noticed in the enzymatic response including catalase and peroxidase activity. Being a vital organ gill reflects the fish's physiological condition and the severity of the contamination in the surrounding environment. Gill is also the prime organ of osmoregulation in teleosts. Decreased activity of Na+/K+-ATPase suggests lead as a potent inhibitor of Na+/K+-ATPase that causes sodium hyperregulation. Alteration in the activity of metabolic enzymes reflects the level of tissue damage and metabolic disruption. At the same time, the increased activity of antioxidant enzymes states the condition of oxidative stress. Haematological parameters also altered with the lead nitrate exposure, reflecting metal toxicity and immune response against it. Meanwhile, this study also provides a potential use of H. fossilis as a biomarker for aquatic pollution.


Subject(s)
Catfishes , Water Pollutants, Chemical , Animals , Catfishes/physiology , Gills , Lead/toxicity , Nitrates/toxicity , Water Pollutants, Chemical/toxicity
4.
J Fish Dis ; 43(8): 941-953, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32618004

ABSTRACT

This study was carried out to comprehend the pathogenicity of the bacteria in the epidermis of Labeo rohita inoculated with Aeromonas hydrophila. Alterations in the histopathology of the epidermis were examined using scanning electron microscopy, light microscopy and the localization of iNOS and caspase 3 + ve cells by means of immunohistochemical methods. Skin samples obtained from infected fish at different intervals 2, 4, 6, 8 and 10 days showed significant changes in the cellular components of the epidermis. Epithelial cells often appeared hypertrophied with fragmented and loosely arranged microridges, and in the process of exfoliation. Mucous goblet cells increased significantly in density. Club cells showed degenerative changes, often with simultaneous confluence of adjacent cells and release of their contents. Increase in density of iNOS and caspase 3 + ve cells indicates inflammatory response and apoptosis. This study could provide valuable information on the pathogenesis of the disease, and disease outbreaks in farmed fish. Further, it could provide useful guidelines for fish farmers to take preventive measures for the control of the disease.


Subject(s)
Aeromonas hydrophila/physiology , Aeromonas hydrophila/pathogenicity , Carps , Epidermis/pathology , Fish Diseases/pathology , Gram-Negative Bacterial Infections/veterinary , Skin Diseases, Bacterial/veterinary , Animals , Epidermis/microbiology , Epidermis/ultrastructure , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/pathology , Microscopy, Electron, Scanning/veterinary , Skin Diseases, Bacterial/microbiology , Skin Diseases, Bacterial/pathology , Virulence
5.
Tissue Cell ; 62: 101317, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32433019

ABSTRACT

Present study reports significant modifications in surface ultrastructure, histological organization, and histochemical localization of glycoproteins (GPs) in the gills of a hill stream catfish, Hara hara. Punctate microridges on free surface of epithelial cells covering gill arches, gill rakers, gill filaments and secondary lamellae are considered to provide adaptive plasticity to gills in relation to the environment inhabited by fish. Short and stout gill rakers are considered to prevent food particles to pass in opercular chamber along with respiratory current that could damage delicate gill filaments. Mucous goblet cells show presence of different classes of glycoproteins. GPs with oxidizable vicinal diols are considered to control acidity of acidic GPs. GPs with carboxyl groups have been implicated with defensive mechanism against microorganisms. GPs with O-sulphate esters are associated to trap and to lubricate food particles for easy swallowing. Taste buds on gill arches and gill rakers function to select palatable food particles. Occurrence of taste buds on the gill filaments is regarded significant adaptation to analyse the chemical nature of water. This study could play a significant role to understand adjustment of gills in the hill stream fish.


Subject(s)
Catfishes/anatomy & histology , Gills/cytology , Gills/ultrastructure , Microscopy, Electron, Scanning , Animals , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Epithelium/ultrastructure , Fish Proteins/metabolism , Glycoproteins/metabolism , Goblet Cells/cytology , Goblet Cells/metabolism , Goblet Cells/ultrastructure , Rivers
6.
Anat Histol Embryol ; 49(1): 67-79, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31513301

ABSTRACT

A series of histochemical techniques have been employed to localize alkaline phosphatase, acid phosphatase, non-specific esterase, catalase and peroxidase; and to visualize and characterize glycoprotein (GPs) moieties in the epithelium of gill arch, gill filaments and secondary lamellae of an angler catfish Chaca chaca. The epithelium of gill arch and gill filament shows strong alkaline phosphatase activity in the deeper layer epithelial cells; strong non-specific esterase activities in the outer layer epithelial cells; and weak acid phosphatase activity throughout the epithelium. The activity of these enzymes in the secondary lamellae is weak. The catalase and peroxidase show strong activities in the blood cells of the secondary lamellae. Various classes of GPs have been identified and characterized in the mucous secretions of the gill epithelium of C. chaca. These include-GPs with oxidizable vicinal diols, GPs with sialic acid residues without O-acyl substitution and GPs with O-sulphate esters. The functional significance of different enzymes in gill epithelium and the GPs in the mucus secreted on the surface has been discussed with the physiology of the gills in relation to the characteristic habit and habitat of the fish.


Subject(s)
Catfishes , Epithelium/enzymology , Gills/enzymology , Animals , Catalase/metabolism , Catfishes/physiology , Gills/cytology , Glycoproteins/metabolism , Histocytochemistry , Mucus/metabolism , Peroxidase/metabolism , Phosphoric Monoester Hydrolases/metabolism
7.
Tissue Cell ; 55: 25-30, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30503057

ABSTRACT

The present study is concerned with the expression and localization of nitric oxide synthase (NOS) isoforms, nNOS, eNOS and iNOS in the epidermis and the gill epithelium of Chaca chaca by means of immunohistochemical techniques. nNOS immunoreactivity was observed in the outer layer epithelial cells of the epidermis, outer epithelium of gill filaments at their distal regions and in between the secondary lamellae. iNOS positive cells were observed at intervals in the epidermis from basal layer to superficial layer, in outer layers of epithelium of the gill filament and in epithelium of the secondary lamellae. The expression of eNOS is similar to that of iNOS in the gills. In addition, NOS activity was also observed in the taste buds in the epidermis. The expression of different NOS isoforms in C. chaca are associated to increase the adaptability and survivability of the fish in hypoxic condition, help in defence and ion regulation and sensory functions. The study could be useful to understand the expression of NOS isoforms in different fish tissues and their diverse role in relation to the physiology of the fish.


Subject(s)
Epidermis/metabolism , Epithelial Cells/metabolism , Gills/cytology , Nitric Oxide Synthase/metabolism , Animals , Catfishes/metabolism , Epithelium/metabolism , Fishes , Gene Expression Regulation, Enzymologic/physiology , Immunohistochemistry/methods
8.
Zoology (Jena) ; 131: 10-19, 2018 12.
Article in English | MEDLINE | ID: mdl-30502823

ABSTRACT

The present study describes keratinization and mucogenesis in the epidermis of an angler catfish Chaca chaca, using a series of immunochemical, fluorescence and histochemical methods. The epidermis is primarily mucogenic and shows characteristic specialised structures at irregular intervals. These structures are identified keratinized in nature. The superficial layer epithelial cells in the keratinized structures often detach from the underlying epithelial cells and exfoliate either singly or in the form of sheet. This is associated to provide protection by removing silty depositions, pathogens, and debris along with exfoliated keratinized cells/sheets periodically to keep the skin surface clean. Mucogenic epidermis is equipped with the mucous goblet cells and the club cells. Nevertheless, these cells are not discernible in the keratinized structures. This suggests an inverse relationship between mucogenesis and keratinization in the epidermis of the fish. The mucogenic epidermis is involved in the secretion of different classes of glycoproteins. These include glycoproteins with oxidizable vicinal diols, glycoproteins with O-sulphate esters and glycoproteins with sialic acid residues without O-acyl substitution. Secretion of these glycoproteins on the surface are associated to control the acidity of the acidic glycoproteins, to protect the skin surface against bacterial, viral infection and other pathogens, and help in lubrication to protect against abrasion during burrowing. Epidermal keratinization and glycoprotein characterization are associated with the physiological adaptations in relation to the characteristic habit and habitat of the fish.


Subject(s)
Catfishes/physiology , Epidermis/physiology , Immunohistochemistry , Keratins/metabolism , Microscopy, Fluorescence , Mucus/physiology , Animals , Epidermis/metabolism , Glycoproteins/metabolism
9.
Microsc Res Tech ; 81(5): 439-448, 2018 May.
Article in English | MEDLINE | ID: mdl-29350451

ABSTRACT

The present work was undertaken with the aim to deduce morphological adaptations in skin of an angler catfish Chaca chaca by means of scanning electron microscopy. The fish is nocturnal, bottom dwelling, sluggish, ambush predator, lives in sand, mud, or soft substrates often buried and camouflaged for protection and to feed. The surface of the epidermis is covered with polygonal epithelial cells, each having surface relief of microridges forming intricate patterns. In between epithelial cells irregularly distributed mucous cell openings, randomly distributed epidermal specialized structures, taste buds, and neuromasts are discernible. The epidermal specialized structures are keratinized. These are either irregularly the rounded elevated plaque like or the cone shaped structures. The superficial keratinized cells could frequently be discernible exfoliated at the surface. At intervals, characteristic epidermal projections could be observed. Surface of these projections at intervals is differentiated into short stumpy protuberances, each bearing a taste bud at its summit. Further, near the basal portion of these epidermal projections, conical, or rounded plaque like epidermal specialized structures are also discernible. The surface sculpture of the skin of Chaca chaca is associated with the structural and functional significance and physiological adaptations of the epidermis with respect to its ecological niche.


Subject(s)
Catfishes/anatomy & histology , Epidermis/ultrastructure , Animals , Microscopy, Electron, Scanning
10.
Environ Sci Pollut Res Int ; 24(9): 8671-8681, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28197946

ABSTRACT

Histopathological changes and alterations in the activity of certain metabolic and antioxidant enzymes were analyzed in the head skin of Labeo rohita, exposed to sublethal test concentrations of the azo dye, Eriochrome black T for 4 days, using 24 h renewal bioassay method. Hypertrophied epithelial cells, increased density of mucous goblet cells, and profuse mucous secretion at the surface were considered to protect the skin from toxic impact of the azo dye. Degenerative changes including vacuolization, shrinkage, decrease in dimension, and density of club cells with simultaneous release of their contents in the intercellular spaces were associated to plug them, preventing indiscriminate entry of foreign matter. On exposure of fish to the dye, significant decline in the activity of enzymes-alkaline phosphatase, acid phosphatase, carboxylesterase, succinate dehydrogenase, catalase, and peroxidase-was associated with the binding of dye to the enzymes. Gradual increase in the activity of lactate dehydrogenase was considered to reflect a shift from aerobic to anaerobic metabolism. On transfer of azo dye exposed fish to freshwater, skin gradually recovers and, by 8 days, density and area of mucous goblet cells, club cells, and activity of the enzymes appear similar to that of controls. Alteration in histopathology and enzyme activity could be considered beneficial tool in monitoring environmental toxicity, valuable in the sustenance of fish populations.


Subject(s)
Azo Compounds/toxicity , Coloring Agents/toxicity , Cyprinidae/metabolism , Environmental Monitoring/methods , Skin/drug effects , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Catalase/metabolism , Skin/enzymology , Skin/pathology , Succinate Dehydrogenase/metabolism
11.
Microsc Res Tech ; 79(10): 973-981, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27465704

ABSTRACT

Surface ultrastructure of the gills of the angler catfish Chaca chaca was investigated to unravel the adaptive modifications associated with the feeding ecology of the fish. The fish is often found in mud or in soft substrates where they remain buried both for protection and to feed. Gill rakers present on the gill arch in most fish species are absent in this fish. The absence of gill rakers are associated with the feeding habit of the fish and is considered to facilitate the swallowing of captured prey smoothly without any hindrance. Highly corrugated surface of the gill arch and gill filaments could be associated to retain water/mucus to prevent dessicassion of the fish. Papillae like epithelial protuberances each bearing a taste bud at its summit toward the pharyngeal side of the gill arch is associated with the sorting of the food. Large number of mucous goblet cells on the gill arch epithelium are considered to secret copious mucus to lubricate the prey for easy swallowing. In C. chaca the gill septa between gill filaments are reduced. This could enhance the flexibility and permit the free movement of the gill filaments. Extensive secondary lamellae and infrequent mucous goblet cells on secondary lamellae are associated to increase the surface area to enhance efficiency of gaseous exchange.


Subject(s)
Catfishes/anatomy & histology , Catfishes/physiology , Feeding Behavior/physiology , Gills/ultrastructure , Taste Buds/ultrastructure , Animals , Ecology , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...