Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 139(3): 661-71, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12788826

ABSTRACT

(1) Vasorelaxation and hyperpolarization of endothelial cells by adenosine 5'-[beta-thio]diphosphate (ADPbetaS) and adenosine 5'-[gamma-thio]triphosphate (ATPgammaS) were studied in rat-isolated mesenteric artery. Effects from stimulation of P2X receptors were avoided by desensitization with alpha,beta-methylene adenosine triphosphate. (2) ADPbetaS caused concentration- and endothelium-dependent relaxations of methoxamine-precontracted small (third generation) and main mesenteric artery. These were inhibited by N(omega)-nitro-L-arginine methyl ester (L-NAME) or a combination of apamin plus charybdotoxin (inhibitors of Ca(2+)-activated K(+) channels); L-NAME, apamin and charybdotoxin applied together abolished the response. (3) ATPgammaS induced limited relaxation (35% of methoxamine-induced tone at 10 micro M) of small mesenteric artery, which was sensitive to L-NAME or endothelium denudation. However, it almost completely relaxed the main mesenteric artery over an extended concentration range (>6 orders of magnitude) in an endothelium-dependent manner. This relaxation was inhibited by either L-NAME or a combination of apamin with charybdotoxin, and abolished by a combination of all the three inhibitors. (4) The P2Y(1) receptor antagonist MRS 2179 (2'-deoxy-N(6)-methyladenosine 3',5'-bisphosphate; 0.3-3 micro M) caused parallel rightward shifts of the concentration/relaxation curve to ADPbetaS (pA(2)=7.1). However, MRS 2179 did not inhibit, but potentiated, relaxant responses to ATPgammaS. MRS 2179 did not affect the contractile responses ATPgammaS in small mesenteric artery; ATPgammaS did not contract the main mesenteric artery. (5) ADPbetaS hyperpolarized the endothelium of the main mesenteric artery in a concentration-dependent manner. This was unaffected by L-NAME but antagonized by MRS 2179. ATPgammaS also hyperpolarized the mesenteric artery endothelium in a concentration-dependent manner but, when ATPgammaS was applied at 10 micro M, its effect was potentiated by MRS 2179 (3 micro M). (6) It is concluded that both relaxation and hyperpolarization to ADPbetaS are mediated by P2Y(1) receptors and that the endothelial hyperpolarization is related to the L-NAME-resistant relaxation. Relaxation to the P2Y(2) agonist ATPgammaS shows regional variation along the mesenteric vasculature. The mechanisms for potentiation of relaxation and hyperpolarization by ATPgammaS are unknown, but may indicate interactions between P2Y receptor subtypes.


Subject(s)
Adenosine Diphosphate/analogs & derivatives , Adenosine Triphosphate/analogs & derivatives , Endothelium, Vascular/drug effects , Mesenteric Arteries/drug effects , Purinergic P2 Receptor Agonists , Vasodilation/drug effects , Adenosine Diphosphate/pharmacology , Adenosine Triphosphate/pharmacology , Animals , Dose-Response Relationship, Drug , Endothelium, Vascular/physiology , Male , Mesenteric Arteries/physiology , Rats , Rats, Wistar , Receptors, Purinergic P2/physiology , Thionucleotides/pharmacology , Vasodilation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...