Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 16(4): e2003611, 2018 04.
Article in English | MEDLINE | ID: mdl-29630591

ABSTRACT

Nitric oxide (NO) regulates neuronal function and thus is critical for tuning neuronal communication. Mechanisms by which NO modulates protein function and interaction include posttranslational modifications (PTMs) such as S-nitrosylation. Importantly, cross signaling between S-nitrosylation and prenylation can have major regulatory potential. However, the exact protein targets and resulting changes in function remain elusive. Here, we interrogated the role of NO-dependent PTMs and farnesylation in synaptic transmission. We found that NO compromises synaptic function at the Drosophila neuromuscular junction (NMJ) in a cGMP-independent manner. NO suppressed release and reduced the size of available vesicle pools, which was reversed by glutathione (GSH) and occluded by genetic up-regulation of GSH-generating and de-nitrosylating glutamate-cysteine-ligase and S-nitroso-glutathione reductase activities. Enhanced nitrergic activity led to S-nitrosylation of the fusion-clamp protein complexin (cpx) and altered its membrane association and interactions with active zone (AZ) and soluble N-ethyl-maleimide-sensitive fusion protein Attachment Protein Receptor (SNARE) proteins. Furthermore, genetic and pharmacological suppression of farnesylation and a nitrosylation mimetic mutant of cpx induced identical physiological and localization phenotypes as caused by NO. Together, our data provide evidence for a novel physiological nitrergic molecular switch involving S-nitrosylation, which reversibly suppresses farnesylation and thereby enhances the net-clamping function of cpx. These data illustrate a new mechanistic signaling pathway by which regulation of farnesylation can fine-tune synaptic release.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Nerve Tissue Proteins/metabolism , Neurotransmitter Agents/metabolism , Nitric Oxide/metabolism , Protein Processing, Post-Translational , Adaptor Proteins, Vesicular Transport/genetics , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Animals , Brain/metabolism , Cyclic GMP/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Glutathione/metabolism , Larva/genetics , Larva/metabolism , Nerve Tissue Proteins/genetics , Neuromuscular Junction/cytology , Neuromuscular Junction/metabolism , Phenotype , Prenylation , SNARE Proteins/genetics , SNARE Proteins/metabolism , Synaptic Transmission , Synaptic Vesicles/metabolism
2.
Neuron ; 60(4): 642-56, 2008 Nov 26.
Article in English | MEDLINE | ID: mdl-19038221

ABSTRACT

Neuronal nitric oxide synthase (nNOS) is broadly expressed in the brain and associated with synaptic plasticity through NMDAR-mediated calcium influx. However, its physiological activation and the mechanisms by which nitric oxide (NO) influences synaptic transmission have proved elusive. Here, we exploit the unique input-specificity of the calyx of Held to characterize NO modulation at this glutamatergic synapse in the auditory pathway. NO is generated in an activity-dependent manner by MNTB principal neurons receiving a calyceal synaptic input. It acts in the target neuron and adjacent inactive neurons to modulate excitability and synaptic efficacy, inhibiting postsynaptic Kv3 potassium currents (via phosphorylation), reducing EPSCs and so increasing action potential duration and reducing transmission fidelity. We conclude that NO serves as a volume transmitter and slow dynamic modulator, integrating spontaneous and evoked neuronal firing, thereby providing an index of global activity and regulating information transmission across a population of active and inactive neurons.


Subject(s)
Auditory Pathways/metabolism , Glutamic Acid/metabolism , Nitrergic Neurons/metabolism , Nitric Oxide/metabolism , Pons/metabolism , Synaptic Transmission/physiology , Action Potentials/physiology , Animals , Auditory Pathways/cytology , Excitatory Postsynaptic Potentials/physiology , Mice , Mice, Inbred CBA , Nitric Oxide Synthase Type I/metabolism , Organ Culture Techniques , Pons/cytology , Presynaptic Terminals/metabolism , Presynaptic Terminals/ultrastructure , Shaw Potassium Channels/metabolism , Synaptic Membranes/metabolism , Synaptic Membranes/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...