Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Essays Biochem ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712401

ABSTRACT

The vast structural diversity of sulfated polysaccharides demands an equally diverse array of enzymes known as polysaccharide sulfotransferases (PSTs). PSTs are present across all kingdoms of life, including algae, fungi and archaea, and their sulfation pathways are relatively unexplored. Sulfated polysaccharides possess anti-inflammatory, anticoagulant and anti-cancer properties and have great therapeutic potential. Current identification of PSTs using Pfam has been predominantly focused on the identification of glycosaminoglycan (GAG) sulfotransferases because of their pivotal roles in cell communication, extracellular matrix formation and coagulation. As a result, our knowledge of non-GAG PSTs structure and function remains limited. The major sulfotransferase families, Sulfotransfer_1 and Sulfotransfer_2, display broad homology and should enable the capture of a wide assortment of sulfotransferases but are limited in non-GAG PST sequence annotation. In addition, sequence annotation is further restricted by the paucity of biochemical analyses of PSTs. There are now high-throughput and robust assays for sulfotransferases such as colorimetric PAPS (3'-phosphoadenosine 5'-phosphosulfate) coupled assays, Europium-based fluorescent probes for ratiometric PAP (3'-phosphoadenosine-5'-phosphate) detection, and NMR methods for activity and product analysis. These techniques provide real-time and direct measurements to enhance the functional annotation and subsequent analysis of sulfated polysaccharides across the tree of life to improve putative PST identification and characterisation of function. Improved annotation and biochemical analysis of PST sequences will enhance the utility of PSTs across biomedical and biotechnological sectors.

2.
Front Neurosci ; 14: 561462, 2020.
Article in English | MEDLINE | ID: mdl-33177976

ABSTRACT

α-Synuclein (aSyn) aggregation is an attractive target for therapeutic development for a range of neurodegenerative conditions, collectively termed synucleinopathies. Here, we probe the mechanism of action of a peptide 4554W, (KDGIVNGVKA), previously identified through intracellular library screening, to prevent aSyn aggregation and associated toxicity. We utilize NMR to probe association and identify that 4554W associates with a "partially aggregated" form of aSyn, with enhanced association occurring over time. We also report the ability of 4554W to undergo modification through deamidation of the central asparagine residue, occurring on the same timescale as aSyn aggregation in vitro, with peptide modification enhancing its association with aSyn. Additionally, we report that 4554W can act to reduce fibril formation of five Parkinson's disease associated aSyn mutants. Inhibitory peptide binding to partially aggregated forms of aSyn, as identified here, is particularly attractive from a therapeutic perspective, as it would eliminate the need to administer the therapy at pre-aggregation stages, which are difficult to diagnose. Taken together the data suggest that 4554W could be a suitable candidate for future therapeutic development against wild-type, and most mutant aSyn aggregation.

SELECTION OF CITATIONS
SEARCH DETAIL
...