Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982208

ABSTRACT

A universal approach to the construction of antibody-drug conjugates (ADCs) has been developed. It relies on periodate oxidation of naturally present glycans of immunoglobulin G, followed by oxime ligation and, optionally, copper(I)-catalyzed alkyne-azide cycloaddition for conjugation with a toxic payload. The introduction of highly absorbing cyanine dyes into the linker allows for facile determination of the drug-antibody ratio. We applied this methodology to the synthesis of cytotoxic conjugates of an antibody against the tumor-associated antigen PRAME with doxorubicin and monomethyl auristatin E (MMAE). The resultant conjugates retained their affinity to a large extent, yet their cytotoxicity in vitro varied dramatically: while the doxorubicin-based conjugate did not produce any effect on cells, the MMAE-based one demonstrated specific activity against PRAME-expressing cancer cell lines. Importantly, the latter conjugate constitutes the first reported example of a PRAME-targeting ADC.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Immunoconjugates/pharmacology , Immunoglobulin G , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Doxorubicin
2.
Molecules ; 28(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36615611

ABSTRACT

Fluorescent antibodies have proved to be an invaluable tool for molecular biology and diagnostics. They are routinely produced by modification of lysine residues, which leads to high heterogeneity. As such, their affinity may be compromised if the antigen-binding site is affected, the probability of which increases along with the degree of labeling. In this work, we propose a methodology for the synthesis of site-specific antibody-dye conjugates with a high degree of labeling. To this end, we synthesized two oxyamine-based branched triazide linkers and coupled them with a periodate-oxidized anti-PRAME antibody 6H8; two oxyamine-based linear monoazide linkers of similar structure were used as controls. The azide-labeled antibodies were subsequently conjugated with fluorescent dyes via SPAAC, a copper-free click reaction. Compared to their counterparts made with linear linkers, the branched conjugates possessed a higher degree of labeling. The utility of the methodology was demonstrated in the detection of the PRAME protein on the surface of the cell by flow cytometry.


Subject(s)
Antibodies , Fluorescent Dyes , Fluorescent Dyes/chemistry , Antigens
3.
Clin Sarcoma Res ; 10: 3, 2020.
Article in English | MEDLINE | ID: mdl-32042403

ABSTRACT

BACKGROUND: Autologous dendritic cells (DC) loaded with tumor-associated antigens (TAAs) are a promising approach for anticancer immunotherapy. Polyantigen lysates appear to be an excellent source of TAAs for loading onto the patient's dendritic cells. Cancer/testis antigens (CTA) are expressed by a wide range of tumors, but are minimally expressed on normal tissues, and could serve as a universal target for immunotherapy. However, CTA expression levels can vary significantly in patients with the same tumor type. We proposed that patients who do not respond to DC-based therapy may have distinct features of the CTA expression profile on tumor cells. PATIENTS AND METHODS: We compared the gene expression of the principal families CTA in 22 melanoma and 27 soft tissue and bone sarcomas cell lines (STBS), received from patients and used for DC vaccine preparation. RESULTS: The majority (47 of 49, 95.9%) cell lines showed CTA gene activity. The incidence of gene expression of GAGE, NYESO1, MAGEA1, PRAME's was significantly different (adj. p < 0.05) between melanoma and sarcoma cell lines. The expression of the SCP1 gene was detected neither in melanoma cells nor in the STBS cells. Clustering by the gene expression profile revealed four different expression patterns. We found three main patterns types: hyperexpression of multiple CTA, hyperexpression of one CTA with almost no expression of others, and no expression of CTA. All clusters types exist in melanoma and sarcoma cell lines. We observed dependence of killing efficacy from the PRAME (rho = 0.940, adj. p < 0.01) expression during real-time monitoring with the xCELLigence system of the interaction between melanoma or sarcoma cells with the T-lymphocytes activated by the lysate of selected allogenous melanoma cell lines with high expression of CTA. CONCLUSION: Our results demonstrate that one can use lysates from allogeneic melanoma cell lines as a source of CTA for DC load during the production of anticancer vaccines for the STBS treatment. Patterns of CTA expression should be evaluated as biomarkers of response in prospective clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...