Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioinform ; 3: 1225149, 2023.
Article in English | MEDLINE | ID: mdl-38025397

ABSTRACT

In this study, we present an algorithmic framework integrated within the created software platform tailored for the discovery of novel small-molecule anti-tumor agents. Our approach was exemplified in the context of combatting lung cancer. In the initial phase, target identification for therapeutic intervention was accomplished. Leveraging deep learning, we scrutinized gene expression profiles, focusing on those associated with adverse clinical outcomes in lung cancer patients. Augmenting this, generative adversarial neural (GAN) networks were employed to amass additional patient data. This effort yielded a subset of genes definitively linked to unfavorable prognoses. We further employed deep learning to delineate genes capable of discriminating between normal and tumor tissues based on expression patterns. The remaining genes were earmarked as potential targets for precision lung cancer therapy. Subsequently, a dedicated module was formulated to predict the interactions between inhibitors and proteins. To achieve this, protein amino acid sequences and chemical compound formulations engaged in protein interactions were encoded into vectorized representations. Additionally, a deep learning-based component was developed to forecast IC50 values through experimentation on cell lines. Virtual pre-clinical trials employing these inhibitors facilitated the selection of pertinent cell lines for subsequent laboratory assays. In summary, our study culminated in the derivation of several small-molecule formulas projected to bind selectively to specific proteins. This algorithmic platform holds promise in accelerating the identification and design of anti-tumor compounds, a critical pursuit in advancing targeted cancer therapies.

2.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982208

ABSTRACT

A universal approach to the construction of antibody-drug conjugates (ADCs) has been developed. It relies on periodate oxidation of naturally present glycans of immunoglobulin G, followed by oxime ligation and, optionally, copper(I)-catalyzed alkyne-azide cycloaddition for conjugation with a toxic payload. The introduction of highly absorbing cyanine dyes into the linker allows for facile determination of the drug-antibody ratio. We applied this methodology to the synthesis of cytotoxic conjugates of an antibody against the tumor-associated antigen PRAME with doxorubicin and monomethyl auristatin E (MMAE). The resultant conjugates retained their affinity to a large extent, yet their cytotoxicity in vitro varied dramatically: while the doxorubicin-based conjugate did not produce any effect on cells, the MMAE-based one demonstrated specific activity against PRAME-expressing cancer cell lines. Importantly, the latter conjugate constitutes the first reported example of a PRAME-targeting ADC.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Immunoconjugates/pharmacology , Immunoglobulin G , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Doxorubicin
3.
Molecules ; 28(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36615611

ABSTRACT

Fluorescent antibodies have proved to be an invaluable tool for molecular biology and diagnostics. They are routinely produced by modification of lysine residues, which leads to high heterogeneity. As such, their affinity may be compromised if the antigen-binding site is affected, the probability of which increases along with the degree of labeling. In this work, we propose a methodology for the synthesis of site-specific antibody-dye conjugates with a high degree of labeling. To this end, we synthesized two oxyamine-based branched triazide linkers and coupled them with a periodate-oxidized anti-PRAME antibody 6H8; two oxyamine-based linear monoazide linkers of similar structure were used as controls. The azide-labeled antibodies were subsequently conjugated with fluorescent dyes via SPAAC, a copper-free click reaction. Compared to their counterparts made with linear linkers, the branched conjugates possessed a higher degree of labeling. The utility of the methodology was demonstrated in the detection of the PRAME protein on the surface of the cell by flow cytometry.


Subject(s)
Antibodies , Fluorescent Dyes , Fluorescent Dyes/chemistry , Antigens
4.
Front Pharmacol ; 13: 920779, 2022.
Article in English | MEDLINE | ID: mdl-35770088

ABSTRACT

Cancer is a common and intractable disease that seriously affects quality of life of patients and imposes heavy economic burden on families and the entire society. Current medications and intervention strategies for cancer have respective shortcomings. In recent years, it has been increasingly spotlighted that chemokines and their receptors play vital roles in the pathophysiology of cancer. Chemokines are a class of structurally similar short-chain secreted proteins that initiate intracellular signaling pathways through the activation of corresponding G protein-coupled receptors and participate in physiological and pathological processes such as cell migration and proliferation. Studies have shown that chemokines and their receptors have close relationships with cancer epigenetic regulation, growth, progression, invasion, metastasis, and angiogenesis. Chemokines and their receptors may also serve as potential targets for cancer treatment. We herein summarize recent research progresses on anti-tumor effects and mechanisms of chemokines and their receptors, suggesting avenues for future studies. Perspectives for upcoming explorations, such as development of multi-targeted chemokine-based anti-tumor drugs, are also discussed in the present review.

5.
Int J Mol Sci ; 22(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34884647

ABSTRACT

Bioconjugation of antibodies with various payloads has diverse applications across various fields, including drug delivery and targeted imaging techniques. Fluorescent immunoconjugates provide a promising tool for cancer diagnostics due to their high brightness, specificity, stability and target affinity. Fluorescent antibodies are widely used in flow cytometry for fast and sensitive identification and collection of cells expressing the target surface antigen. Nonetheless, current approaches to fluorescent labeling of antibodies most often use random modification, along with a few rather sophisticated site-specific techniques. The aim of our work was to develop a procedure for fluorescent labeling of immunoglobulin G via periodate oxidation of antibody glycans, followed by oxime ligation with fluorescent oxyamines. Here, we report a novel technique based on an in situ oxime ligation of ethoxyethylidene-protected aminooxy compounds with oxidized antibody glycans. The approach is suitable for easy modification of any immunoglobulin G, while ensuring that antigen-binding domains remain intact, thus revealing various possibilities for fluorescent probe design. The technique was used to label an antibody to PRAME, a cancer-testis protein overexpressed in a number of cancers. A 6H8 monoclonal antibody to the PRAME protein was directly modified with protected-oxyamine derivatives of fluorescein-type dyes (FAM, Alexa488, BDP-FL); the stoichiometry of the resulting conjugates was characterized spectroscopically. The immunofluorescent conjugates obtained were applied to the analysis of bone marrow samples from patients with oncohematological diseases and demonstrated high efficiency in flow cytometry quantification. The approach can be applied for the development of various immunofluorescent probes for detection of diagnostic and prognostic markers, which can be useful in anticancer therapy.


Subject(s)
Antibodies, Monoclonal/chemistry , Antigens, Neoplasm/analysis , Fluorescent Antibody Technique/methods , Fluorescent Dyes/chemistry , Immunoconjugates/chemistry , Leukemia, Myeloid, Acute/diagnosis , Antibodies, Monoclonal/immunology , Antigens, Neoplasm/immunology , Bone Marrow/immunology , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Line, Tumor , Humans , Immunoconjugates/immunology , Immunoconjugates/metabolism , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/metabolism
6.
Clin Sarcoma Res ; 10: 3, 2020.
Article in English | MEDLINE | ID: mdl-32042403

ABSTRACT

BACKGROUND: Autologous dendritic cells (DC) loaded with tumor-associated antigens (TAAs) are a promising approach for anticancer immunotherapy. Polyantigen lysates appear to be an excellent source of TAAs for loading onto the patient's dendritic cells. Cancer/testis antigens (CTA) are expressed by a wide range of tumors, but are minimally expressed on normal tissues, and could serve as a universal target for immunotherapy. However, CTA expression levels can vary significantly in patients with the same tumor type. We proposed that patients who do not respond to DC-based therapy may have distinct features of the CTA expression profile on tumor cells. PATIENTS AND METHODS: We compared the gene expression of the principal families CTA in 22 melanoma and 27 soft tissue and bone sarcomas cell lines (STBS), received from patients and used for DC vaccine preparation. RESULTS: The majority (47 of 49, 95.9%) cell lines showed CTA gene activity. The incidence of gene expression of GAGE, NYESO1, MAGEA1, PRAME's was significantly different (adj. p < 0.05) between melanoma and sarcoma cell lines. The expression of the SCP1 gene was detected neither in melanoma cells nor in the STBS cells. Clustering by the gene expression profile revealed four different expression patterns. We found three main patterns types: hyperexpression of multiple CTA, hyperexpression of one CTA with almost no expression of others, and no expression of CTA. All clusters types exist in melanoma and sarcoma cell lines. We observed dependence of killing efficacy from the PRAME (rho = 0.940, adj. p < 0.01) expression during real-time monitoring with the xCELLigence system of the interaction between melanoma or sarcoma cells with the T-lymphocytes activated by the lysate of selected allogenous melanoma cell lines with high expression of CTA. CONCLUSION: Our results demonstrate that one can use lysates from allogeneic melanoma cell lines as a source of CTA for DC load during the production of anticancer vaccines for the STBS treatment. Patterns of CTA expression should be evaluated as biomarkers of response in prospective clinical trials.

7.
Melanoma Res ; 27(1): 8-16, 2017 02.
Article in English | MEDLINE | ID: mdl-27776018

ABSTRACT

The increasing incidence of melanoma makes this cancer an important public health problem. Therapeutic resistance is still a major obstacle to the therapy of patients with metastatic melanomas. The aim of this study was to develop the melanoma cell line resistant to DNA-alkylating agents and to elucidate the mechanisms involved in acquired drug resistance. We established a unique melanoma subline Mel MeR resistant to DNA-alkylating drug aranoza by continuous stepwise selection of the Mel Me/WT cell line with increasing concentrations of this drug. Mel MeR cells were also cross-resistant to streptozotocin or cisplatin. Here, we show that aranoza-resistant melanoma cells modulate the ABC transporter activity, upregulate the expression of PRAME, adopt a vascular-related phenotype and engage in vasculogenic mimicry. LCS1269, a vasculogenic mimicry low-molecular-weight inhibitor, reverses the sensitivity of resistant melanoma cells to DNA-damaging agents. In this study, we provide experimental evidence that LCS1269 might be considered as a new potential anticancer agent capable of overcoming multidrug resistance for DNA-damaging agents in melanoma.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Carbazoles/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Glycosides/pharmacology , Melanoma/drug therapy , Melanoma/metabolism , Methylnitrosourea/analogs & derivatives , Neovascularization, Pathologic/prevention & control , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antigens, Neoplasm/genetics , Apoptosis/drug effects , CD24 Antigen/metabolism , Drug Resistance, Neoplasm/genetics , Endoglin/metabolism , Fluorescent Dyes/metabolism , Gene Expression/drug effects , Humans , Hyaluronan Receptors/metabolism , Intercellular Adhesion Molecule-1/metabolism , Male , Melanoma/blood supply , Melanoma/genetics , Methylnitrosourea/pharmacology , Middle Aged , Neoplasm Proteins/genetics , Neoplastic Stem Cells/metabolism , Nuclear Proteins/genetics , Phenotype , Phosphoprotein Phosphatases/genetics , Proto-Oncogene Proteins c-kit/metabolism , Rhodamine 123/metabolism , Tetraspanin 30/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...