Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spat Spatiotemporal Epidemiol ; 49: 100650, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876563

ABSTRACT

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy that was first detected in captive cervids in Colorado, United States (US) in 1967, but has since spread into free-ranging white-tailed deer (Odocoileus virginianus) across the US and Canada as well as to Scandinavia and South Korea. In some areas, the disease is considered endemic in wild deer populations, and governmental wildlife agencies have employed epidemiological models to understand long-term environmental risk. However, continued rapid spread of CWD into new regions of the continent has underscored the need for extension of these models into broader tools applicable for wide use by wildlife agencies. Additionally, efforts to semi-automate models will facilitate access of technical scientific methods to broader users. We introduce software (Habitat Risk) designed to link a previously published epidemiological model with spatially referenced environmental and disease testing data to enable agency personnel to make up-to-date, localized, data-driven predictions regarding the odds of CWD detection in surrounding areas after an outbreak is discovered. Habitat Risk requires pre-processing publicly available environmental datasets and standardization of disease testing (surveillance) data, after which an autonomous computational workflow terminates in a user interface that displays an interactive map of disease risk. We demonstrated the use of the Habitat Risk software with surveillance data of white-tailed deer from Tennessee, USA.


Subject(s)
Deer , Ecosystem , Software , Wasting Disease, Chronic , Wasting Disease, Chronic/epidemiology , Animals , Animals, Wild , Risk Assessment/methods
2.
Mov Ecol ; 8: 38, 2020.
Article in English | MEDLINE | ID: mdl-33042548

ABSTRACT

BACKGROUND: Preserving corridors for movement and gene flow among populations can assist in the recovery of threatened and endangered species. As human activity continues to fragment habitats, characterizing natural corridors is important in establishing and maintaining connectivity corridors within the anthropogenic development matrix. The Mojave desert tortoise (Gopherus agassizii) is a threatened species occupying a variety of habitats in the Mojave and Colorado Deserts. Desert tortoises have been referred to as corridor-dwellers, and understanding how they move within suitable habitat can be crucial to defining corridors that will sustain sufficient gene flow to maintain connections among populations amidst the increases in human development. METHODS: To elucidate how tortoises traverse available habitat and interact with potentially inhospitable terrain and human infrastructure, we used GPS dataloggers to document fine-scale movement of individuals and estimate home ranges at ten study sites along the California/Nevada border. Our sites encompass a variety of habitats, including mountain passes that serve as important natural corridors connecting neighboring valleys, and are impacted by a variety of linear anthropogenic features. We used path selection functions to quantify tortoise movements and develop resistance surfaces based on landscape characteristics including natural features, anthropogenic alterations, and estimated home ranges with autocorrelated kernel density methods. Using the best supported path selection models and estimated home ranges, we determined characteristics of known natural corridors and compared them to mitigation corridors (remnant habitat patches) that have been integrated into land management decisions in the Ivanpah Valley. RESULTS: Tortoises avoided areas of high slope and low perennial vegetation cover, avoided moving near low-density roads, and traveled along linear barriers (fences and flood control berms). CONCLUSIONS: We found that mitigation corridors designated between solar facilities should be wide enough to retain home ranges and maintain function. Differences in home range size and movement resistance between our two natural mountain pass corridors align with differences in genetic connectivity, suggesting that not all natural corridors provide the same functionality. Furthermore, creation of mitigation corridors with fences may have unintended consequences and may function differently than natural corridors. Understanding characteristics of corridors with different functionality will help future managers ensure that connectivity is maintained among Mojave desert tortoise populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...