Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(28): e2204511119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35867748

ABSTRACT

Despite excellent vaccines, resurgent outbreaks of hepatitis A have caused thousands of hospitalizations and hundreds of deaths within the United States in recent years. There is no effective antiviral therapy for hepatitis A, and many aspects of the hepatitis A virus (HAV) replication cycle remain to be elucidated. Replication requires the zinc finger protein ZCCHC14 and noncanonical TENT4 poly(A) polymerases with which it associates, but the underlying mechanism is unknown. Here, we show that ZCCHC14 and TENT4A/B are required for viral RNA synthesis following translation of the viral genome in infected cells. Cross-linking immunoprecipitation sequencing (CLIP-seq) experiments revealed that ZCCHC14 binds a small stem-loop in the HAV 5' untranslated RNA possessing a Smaug recognition-like pentaloop to which it recruits TENT4. TENT4 polymerases lengthen and stabilize the 3' poly(A) tails of some cellular and viral mRNAs, but the chemical inhibition of TENT4A/B with the dihydroquinolizinone RG7834 had no impact on the length of the HAV 3' poly(A) tail, stability of HAV RNA, or cap-independent translation of the viral genome. By contrast, RG7834 inhibited the incorporation of 5-ethynyl uridine into nascent HAV RNA, indicating that TENT4A/B function in viral RNA synthesis. Consistent with potent in vitro antiviral activity against HAV (IC50 6.11 nM), orally administered RG7834 completely blocked HAV infection in Ifnar1-/- mice, and sharply reduced serum alanine aminotransferase activities, hepatocyte apoptosis, and intrahepatic inflammatory cell infiltrates in mice with acute hepatitis A. These results reveal requirements for ZCCHC14-TENT4A/B in hepatovirus RNA synthesis, and suggest that TENT4A/B inhibitors may be useful for preventing or treating hepatitis A in humans.


Subject(s)
Chromosomal Proteins, Non-Histone , DNA-Directed DNA Polymerase , Hepatitis A virus , Hepatitis A , Intrinsically Disordered Proteins , RNA Nucleotidyltransferases , RNA, Viral , Virus Replication , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chromosomal Proteins, Non-Histone/metabolism , DNA-Directed DNA Polymerase/metabolism , Hepatitis A/drug therapy , Hepatitis A/metabolism , Hepatitis A/virology , Hepatitis A virus/drug effects , Hepatitis A virus/genetics , Hepatitis A virus/physiology , Humans , Intrinsically Disordered Proteins/metabolism , Mice , Mice, Mutant Strains , RNA Nucleotidyltransferases/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , Receptor, Interferon alpha-beta/genetics , Virus Replication/drug effects
2.
Nature ; 606(7916): 960-967, 2022 06.
Article in English | MEDLINE | ID: mdl-35705808

ABSTRACT

Among the caspases that cause regulated cell death, a unique function for caspase-7 has remained elusive. Caspase-3 performs apoptosis, whereas caspase-7 is typically considered an inefficient back-up. Caspase-1 activates gasdermin D pores to lyse the cell; however, caspase-1 also activates caspase-7 for unknown reasons1. Caspases can also trigger cell-type-specific death responses; for example, caspase-1 causes the extrusion of intestinal epithelial cell (IECs) in response to infection with Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium)2,3. Here we show in both organoids and mice that caspase-7-deficient IECs do not complete extrusion. Mechanistically, caspase-7 counteracts gasdermin D pores and preserves cell integrity by cleaving and activating acid sphingomyelinase (ASM), which thereby generates copious amounts of ceramide to enable enhanced membrane repair. This provides time to complete the process of IEC extrusion. In parallel, we also show that caspase-7 and ASM cleavage are required to clear Chromobacterium violaceum and Listeria monocytogenes after perforin-pore-mediated attack by natural killer cells or cytotoxic T lymphocytes, which normally causes apoptosis in infected hepatocytes. Therefore, caspase-7 is not a conventional executioner but instead is a death facilitator that delays pore-driven lysis so that more-specialized processes, such as extrusion or apoptosis, can be completed before cell death. Cells must put their affairs in order before they die.


Subject(s)
Caspase 7 , Perforin , Phosphate-Binding Proteins , Pore Forming Cytotoxic Proteins , Sphingomyelin Phosphodiesterase , Animals , Apoptosis , Caspase 7/metabolism , Chromobacterium/immunology , Epithelial Cells/cytology , Intestines/cytology , Killer Cells, Natural/immunology , Listeria monocytogenes/immunology , Mice , Organoids , Perforin/metabolism , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Sphingomyelin Phosphodiesterase/metabolism , T-Lymphocytes, Cytotoxic/immunology
3.
J Hepatol ; 75(6): 1323-1334, 2021 12.
Article in English | MEDLINE | ID: mdl-34331968

ABSTRACT

BACKGROUND & AIMS: Hepatitis A virus (HAV) is a common cause of enterically transmitted viral hepatitis. In non-immune individuals, infection results in typically transient but occasionally fulminant and fatal inflammatory liver injury. Virus-specific T cell frequencies peak when liver damage is at its zenith, leading to the prevalent notion that T cells exacerbate liver disease, as suspected for other hepatotropic virus infections. However, the overall contribution of T cells to the control of HAV and the pathogenesis of hepatitis A is unclear and has been impeded by a historic lack of small animal models. METHODS: Ifnar1-/- mice are highly permissive for HAV and develop pathogenesis that recapitulates many features of hepatitis A. Using this model, we identified HAV-specific CD8+ and CD4+ T cells by epitope mapping, and then used tetramers and functional assays to quantify T cells in the liver at multiple times after infection. We assessed the relationships between HAV-specific T cell frequency, viral RNA amounts, and liver pathogenesis. RESULTS: A large population of virus-specific T cells accumulated within the livers of Ifnar1-/- mice during the first 1-2 weeks of infection and persisted over time. HAV replication was enhanced and liver disease exacerbated when mice were depleted of T cells. Conversely, immunization with a peptide vaccine increased virus-specific CD8+ T cell frequencies in the liver, reduced viral RNA abundance, and lessened liver injury. CONCLUSION: These data show that T cells protect against HAV-mediated liver injury and can be targeted to improve liver health. LAY SUMMARY: Hepatitis A virus is a leading cause of acute viral hepatitis worldwide. T cells were thought to contribute to liver injury during acute infection. We now show that virus-specific T cells protect against infection and limit liver injury.


Subject(s)
Hepatitis A/prevention & control , Liver Diseases/prevention & control , T-Lymphocytes/metabolism , Analysis of Variance , Animals , Disease Models, Animal , Hepatitis A/drug therapy , Hepatitis A/epidemiology , Hepatitis A virus/drug effects , Hepatitis A virus/pathogenicity , Liver Diseases/drug therapy , Liver Diseases/epidemiology , Mice , North Carolina , Statistics, Nonparametric , T-Lymphocytes/physiology
4.
Cell Rep ; 35(2): 108966, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852868

ABSTRACT

Persistent virus infections can cause pathogenesis that is debilitating or lethal. During these infections, virus-specific T cells fail to protect due to weakened antiviral activity or failure to persist. These outcomes are governed by histone modifications, although it is unknown which enzymes contribute to T cell loss or impaired function over time. In this study, we show that T cell receptor-stimulated CD8+ T cells increase their expression of UTX (ubiquitously transcribed tetratricopeptide repeat, X chromosome) to enhance gene expression. During chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, UTX binds to enhancers and transcription start sites of effector genes, allowing for improved cytotoxic T lymphocyte (CTL)-mediated protection, independent of its trimethylation of histone 3 lysine 27 (H3K27me3) demethylase activity. UTX also limits the frequency and durability of virus-specific CD8+ T cells, which correspond to increased expression of inhibitory receptors. Thus, UTX guides gene expression patterns in CD8+ T cells, advancing early antiviral defenses while reducing the longevity of CD8+ T cell responses.


Subject(s)
Cytotoxicity, Immunologic/genetics , Histone Demethylases/genetics , Immunologic Memory/genetics , Lymphocytic Choriomeningitis/genetics , Lymphocytic choriomeningitis virus/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Gene Expression Profiling , Gene Expression Regulation , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/immunology , Histone Demethylases/deficiency , Histone Demethylases/immunology , Histones/genetics , Histones/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Lymphocytic Choriomeningitis/pathology , Lymphocytic choriomeningitis virus/genetics , Lymphocytic choriomeningitis virus/growth & development , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Signal Transduction , T-Lymphocytes, Cytotoxic/virology , Viral Load/genetics , Viral Load/immunology , Lymphocyte Activation Gene 3 Protein
5.
Cell Rep ; 27(5): 1387-1396.e5, 2019 04 30.
Article in English | MEDLINE | ID: mdl-31042467

ABSTRACT

Arenaviruses can cause severe hemorrhagic disease in humans, which can progress to organ failure and death. The underlying mechanisms causing lethality and person-to-person variation in outcome remain incompletely explained. Herein, we characterize a mouse model that recapitulates many features of pathogenesis observed in humans with arenavirus-induced hemorrhagic disease, including thrombocytopenia, severe vascular leakage, lung edema, and lethality. The susceptibility of congenic B6.PL mice to lymphocytic choriomeningitis virus (LCMV) infection is associated with increased antiviral T cell responses in B6.PL mice compared with C57BL/6 mice and is T cell dependent. Pathogenesis imparted by the causative locus is inherited in a semi-dominant manner in F1 crosses. The locus includes PL-derived sequence variants in both poorly annotated genes and genes known to contribute to immune responses. This model can be used to further interrogate how limited genetic differences in the host can remarkably alter the disease course of viral infection.


Subject(s)
Genetic Loci , Lymphocytic Choriomeningitis/genetics , Lymphocytic choriomeningitis virus/pathogenicity , Multiple Organ Failure/genetics , Animals , Cell Line , Cells, Cultured , Chlorocebus aethiops , Chromosomes/genetics , Cricetinae , Female , Genetic Predisposition to Disease , Lymphocytic Choriomeningitis/complications , Lymphocytic Choriomeningitis/pathology , Male , Mice , Mice, Inbred C57BL , Multiple Organ Failure/etiology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...