Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 150(2)2023 01 15.
Article in English | MEDLINE | ID: mdl-36692218

ABSTRACT

The first characterised FUSE Binding Protein family member, FUBP1, binds single-stranded DNA to activate MYC transcription. Psi, the sole FUBP protein in Drosophila, binds RNA to regulate P-element and mRNA splicing. Our previous work revealed pro-growth functions for Psi, which depend, in part, on transcriptional activation of Myc. Genome-wide functions for FUBP family proteins in transcriptional control remain obscure. Here, through the first genome-wide binding and expression profiles obtained for a FUBP family protein, we demonstrate that, in addition to being required to activate Myc to promote cell growth, Psi also directly binds and activates stg to couple growth and cell division. Thus, Psi knockdown results in reduced cell division in the wing imaginal disc. In addition to activating these pro-proliferative targets, Psi directly represses transcription of the growth inhibitor tolkin (tok, a metallopeptidase implicated in TGFß signalling). We further demonstrate tok overexpression inhibits proliferation, while tok loss of function increases mitosis alone and suppresses impaired cell division caused by Psi knockdown. Thus, Psi orchestrates growth through concurrent transcriptional activation of the pro-proliferative genes Myc and stg, in combination with repression of the growth inhibitor tok.


Subject(s)
Drosophila Proteins , Drosophila , RNA-Binding Proteins , Animals , Cell Division , Cell Proliferation , Drosophila/metabolism , Drosophila Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , RNA-Binding Proteins/metabolism , Transcriptional Activation
2.
Development ; 147(11)2020 06 11.
Article in English | MEDLINE | ID: mdl-32527935

ABSTRACT

Here, we report novel tumour suppressor activity for the Drosophila Argonaute family RNA-binding protein AGO1, a component of the miRNA-dependent RNA-induced silencing complex (RISC). The mechanism for growth inhibition does not, however, involve canonical roles as part of the RISC; rather, AGO1 controls cell and tissue growth by functioning as a direct transcriptional repressor of the master regulator of growth, Myc. AGO1 depletion in wing imaginal discs drives a significant increase in ribosome biogenesis, nucleolar expansion and cell growth in a manner dependent on Myc abundance. Moreover, increased Myc promoter activity and elevated Myc mRNA in AGO1-depleted animals requires RNA polymerase II transcription. Further support for transcriptional AGO1 functions is provided by physical interaction with the RNA polymerase II transcriptional machinery (chromatin remodelling factors and Mediator Complex), punctate nuclear localisation in euchromatic regions and overlap with Polycomb Group transcriptional silencing loci. Moreover, significant AGO1 enrichment is observed on the Myc promoter and AGO1 interacts with the Myc transcriptional activator Psi. Together, our data show that Drosophila AGO1 functions outside of the RISC to repress Myc transcription and inhibit developmental cell and tissue growth.This article has an associated 'The people behind the papers' interview.


Subject(s)
Argonaute Proteins/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/metabolism , Transcription Factors/metabolism , Animals , Animals, Genetically Modified/metabolism , Argonaute Proteins/antagonists & inhibitors , Argonaute Proteins/genetics , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Drosophila/growth & development , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Larva/metabolism , MicroRNAs/metabolism , Mutagenesis, Site-Directed , Promoter Regions, Genetic , RNA Interference , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribosomes/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription, Genetic , Wings, Animal/growth & development , Wings, Animal/physiology
3.
Nucleic Acids Res ; 44(16): 7646-58, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27207882

ABSTRACT

Despite two decades of research, the major function of FBP-family KH domain proteins during animal development remains controversial. The literature is divided between RNA processing and transcriptional functions for these single stranded nucleic acid binding proteins. Using Drosophila, where the three mammalian FBP proteins (FBP1-3) are represented by one ortholog, Psi, we demonstrate the primary developmental role is control of cell and tissue growth. Co-IP-mass spectrometry positioned Psi in an interactome predominantly comprised of RNA Polymerase II (RNA Pol II) transcriptional machinery and we demonstrate Psi is a potent transcriptional activator. The most striking interaction was between Psi and the transcriptional mediator (MED) complex, a known sensor of signaling inputs. Moreover, genetic manipulation of MED activity modified Psi-dependent growth, which suggests Psi interacts with MED to integrate developmental growth signals. Our data suggest the key target of the Psi/MED network in controlling developmentally regulated tissue growth is the transcription factor MYC. As FBP1 has been implicated in controlling expression of the MYC oncogene, we predict interaction between MED and FBP1 might also have implications for cancer initiation and progression.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Mediator Complex/metabolism , Morphogenesis , Proto-Oncogene Proteins c-myc/metabolism , Animals , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Gene Knockdown Techniques , HeLa Cells , Humans , Nuclear Proteins , Promoter Regions, Genetic/genetics , Protein Binding , Protein Subunits/metabolism , RNA Polymerase II/metabolism , RNA-Binding Proteins , Transcription, Genetic
4.
Cell Signal ; 27(10): 2045-53, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26215099

ABSTRACT

Increased rates of ribosome biogenesis and biomass accumulation are fundamental properties of rapidly growing and dividing malignant cells. The MYC oncoprotein drives growth predominantly via its ability to upregulate the ribosome biogenesis program, in particular stimulating the activity of the RNA Polymerase I (Pol I) machinery to increase ribosomal RNA (rRNA) transcription. Although MYC function is known to be highly dependent on the cellular signalling context, the pathways interacting with MYC to regulate transcription of ribosomal genes (rDNA) in vivo in response to growth factor status, nutrient availability and cellular stress are only beginning to be understood. To determine factors critical to MYC-dependent stimulation of rDNA transcription in vivo, we performed a transient expression screen for known oncogenic signalling pathways in Drosophila. Strikingly, from the broad range of pathways tested, we found that ribosomal protein S6 Kinase (S6K) activity, downstream of the TOR pathway, was the only factor rate-limiting for the rapid induction of rDNA transcription due to transiently increased MYC. Further, we demonstrated that one of the mechanism(s) by which MYC and S6K cooperate is through coordinate activation of the essential Pol I transcription initiation factor TIF-1A (RRN 3). As Pol I targeted therapy is now in phase 1 clinical trials in patients with haematological malignancies, including those driven by MYC, these data suggest that therapies dually targeting Pol I transcription and S6K activity may be effective in treating MYC-driven tumours.


Subject(s)
DNA, Ribosomal/genetics , Drosophila melanogaster/genetics , Proto-Oncogene Proteins c-myc/physiology , Ribosomal Protein S6 Kinases/physiology , Transcription, Genetic , Animals , Cell Nucleolus/enzymology , Cell Nucleolus/ultrastructure , Compound Eye, Arthropod/enzymology , Compound Eye, Arthropod/ultrastructure , DNA, Ribosomal/metabolism , Drosophila melanogaster/metabolism , Nuclear Proteins/metabolism , Salivary Glands/enzymology , Salivary Glands/ultrastructure , Transcription Factors/metabolism
5.
Nat Commun ; 6: 7404, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26074141

ABSTRACT

Nucleotide excision DNA repair (NER) pathway mutations cause neurodegenerative and progeroid disorders (xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD)), which are inexplicably associated with (XP) or without (CS/TTD) cancer. Moreover, cancer progression occurs in certain patients, but not others, with similar C-terminal mutations in the XPB helicase subunit of transcription and NER factor TFIIH. Mechanisms driving overproliferation and, therefore, cancer associated with XPB mutations are currently unknown. Here using Drosophila models, we provide evidence that C-terminally truncated Hay/XPB alleles enhance overgrowth dependent on reduced abundance of RNA recognition motif protein Hfp/FIR, which transcriptionally represses the MYC oncogene homologue, dMYC. The data demonstrate that dMYC repression and dMYC-dependent overgrowth in the Hfp hypomorph is further impaired in the C-terminal Hay/XPB mutant background. Thus, we predict defective transcriptional repression of MYC by the Hfp orthologue, FIR, might provide one mechanism for cancer progression in XP/CS.


Subject(s)
Cell Proliferation/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Guanine Nucleotide Exchange Factors/genetics , Transcription Factors/genetics , Animals , Chromatin Immunoprecipitation , DNA Helicases/genetics , Drosophila melanogaster , Gene Expression Regulation , Immunohistochemistry , Mutation , Transcription, Genetic , Xeroderma Pigmentosum/genetics
6.
BMC Dev Biol ; 13: 28, 2013 Jul 13.
Article in English | MEDLINE | ID: mdl-23848468

ABSTRACT

BACKGROUND: Ecdysone triggers transcriptional changes via the ecdysone receptor (EcR) to coordinate developmental programs of apoptosis, cell cycle and differentiation. Data suggests EcR affects cell cycle gene expression indirectly and here we identify Wingless as an intermediary factor linking EcR to cell cycle. RESULTS: We demonstrate EcR patterns cell cycle across the presumptive Drosophila wing margin by constraining wg transcription to modulate CycB expression, but not the previously identified Wg-targets dMyc or Stg. Furthermore co-knockdown of Wg restores CycB patterning in EcR knockdown clones. Wg is not a direct target of EcR, rather we demonstrate that repression of Wg by EcR is likely mediated by direct interaction between the EcR-responsive zinc finger transcription factor Crol and the wg promoter. CONCLUSIONS: Thus we elucidate a critical mechanism potentially connecting ecdysone with patterning signals to ensure correct timing of cell cycle exit and differentiation during margin wing development.


Subject(s)
Cell Cycle , Cyclin B/metabolism , Drosophila Proteins/genetics , Drosophila/metabolism , Receptors, Steroid/metabolism , Receptors, Steroid/physiology , Wnt1 Protein/genetics , Animals , Wings, Animal/metabolism
7.
PLoS Genet ; 7(12): e1002408, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22194697

ABSTRACT

The ribosome is critical for all aspects of cell growth due to its essential role in protein synthesis. Paradoxically, many Ribosomal proteins (Rps) act as tumour suppressors in Drosophila and vertebrates. To examine how reductions in Rps could lead to tissue overgrowth, we took advantage of the observation that an RpS6 mutant dominantly suppresses the small rough eye phenotype in a cyclin E hypomorphic mutant (cycE(JP)). We demonstrated that the suppression of cycE(JP) by the RpS6 mutant is not a consequence of restoring CycE protein levels or activity in the eye imaginal tissue. Rather, the use of UAS-RpS6 RNAi transgenics revealed that the suppression of cycE(JP) is exerted via a mechanism extrinsic to the eye, whereby reduced Rp levels in the prothoracic gland decreases the activity of ecdysone, the steroid hormone, delaying developmental timing and hence allowing time for tissue and organ overgrowth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain members of the Minute class of Drosophila Rp mutants. They also demonstrate how Rp mutants can affect growth and development cell non-autonomously.


Subject(s)
Cyclin E/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Ecdysone/metabolism , Eye/growth & development , Ribosomal Protein S6/genetics , Animals , Animals, Genetically Modified , Cell Proliferation , Cyclin E/genetics , Drosophila melanogaster/metabolism , Endocrine Glands/metabolism , Eye/metabolism , Gene Expression Regulation, Developmental , Organogenesis/genetics , Phenotype , RNA Interference , Ribosomal Protein S6/metabolism
8.
Fly (Austin) ; 5(2): 129-33, 2011.
Article in English | MEDLINE | ID: mdl-21245665

ABSTRACT

Here we highlight our recent study, which revealed a mechanism critical for tight regulation of Drosophila myc (dmyc) transcription. Our previous work demonstrated that the RRM (RNA recognition motif) protein Half pint (Hfp) behaves as a growth and cell cycle inhibitor and work from D. Levens group has shown the mammalian ortholog, FIR (the FBP Interacting Repressor), is a tumor suppressor. Although RRM domain containing proteins such as Hfp and FIR have been ascribed splicing and transcriptional roles, our work suggests that Hfp is likely to achieve cell cycle inhibition via direct repression of dmyc transcription. We have demonstrated that Hfp binds to the dmyc promoter and is essential for repression of dmyc transcription, which requires interaction between Hfp and the DNA helicase subunit of Transcription Factor IIH (TFIIH), Haywire (Hay). Consistent with the increased levels of dmyc transcription, loss of Hfp makes cells overgrow in a manner dependent on the presence of dMyc. Thus our work has demonstrated that Hfp is critical for repression of dmyc and suggested a transcriptional, rather than splicing, mechanism underlies the ability of Hfp to regulate dMyc and function as a tumor suppressor. Thus we have extended knowledge from previous mammalian studies by providing in vivo evidence that the FIR homolog Hfp is required for repression of dmyc transcription, suggesting the mechanism proposed for repression of c-myc transcription by the mammalian RRM protein FIR is conserved in Drosophila.


Subject(s)
DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Drosophila/genetics , Guanine Nucleotide Exchange Factors/physiology , Models, Genetic , Transcription Factors/genetics , Animals , Cell Proliferation , DNA-Binding Proteins/metabolism , Drosophila/cytology , Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Promoter Regions, Genetic , RNA Polymerase II/metabolism , RNA Polymerase II/physiology , Signal Transduction , Transcription Factor TFIIH , Transcription Factors/metabolism , Transcription, Genetic , Transcriptional Activation
9.
Development ; 137(17): 2875-84, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20667914

ABSTRACT

An unresolved question regarding the RNA-recognition motif (RRM) protein Half pint (Hfp) has been whether its tumour suppressor behaviour occurs by a transcriptional mechanism or via effects on splicing. The data presented here demonstrate that Hfp achieves cell cycle inhibition via an essential role in the repression of Drosophila myc (dmyc) transcription. We demonstrate that regulation of dmyc requires interaction between the transcriptional repressor Hfp and the DNA helicase subunit of TFIIH, Haywire (Hay). In vivo studies show that Hfp binds to the dmyc promoter and that repression of dmyc transcription requires Hfp. In addition, loss of Hfp results in enhanced cell growth, which depends on the presence of dMyc. This is consistent with Hfp being essential for inhibition of dmyc transcription and cell growth. Further support for Hfp controlling dmyc transcriptionally comes from the demonstration that Hfp physically and genetically interacts with the XPB helicase component of the TFIIH transcription factor complex, Hay, which is required for normal levels of dmyc expression, cell growth and cell cycle progression. Together, these data demonstrate that Hfp is crucial for repression of dmyc, suggesting that a transcriptional, rather than splicing, mechanism underlies the regulation of dMyc and the tumour suppressor behaviour of Hfp.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila/cytology , Drosophila/metabolism , Genes, Insect , Genes, myc , Guanine Nucleotide Exchange Factors/metabolism , Transcription Factor TFIIH/metabolism , Transcription Factors/genetics , 5' Untranslated Regions , Animals , Animals, Genetically Modified , Base Sequence , Cell Proliferation , DNA Helicases/metabolism , DNA Primers/genetics , Drosophila/genetics , Drosophila/growth & development , Drosophila Proteins/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/genetics , Models, Biological , Promoter Regions, Genetic , RNA Interference , S Phase , Signal Transduction , Transcription, Genetic , Wings, Animal/growth & development , Wings, Animal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...