Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 323(6): R921-R934, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36283092

ABSTRACT

Interleukin (IL)-11, a multifunctional cytokine, contributes to numerous biological processes, including adipogenesis, hematopoiesis, and inflammation. Asthma, a respiratory disease, is notably characterized by reversible airway obstruction, persistent lung inflammation, and airway hyperresponsiveness (AHR). Nasal insufflation of IL-11 causes AHR in wild-type mice while lung inflammation induced by antigen sensitization and challenge, which mimics features of atopic asthma in humans, is attenuated in mice genetically deficient in IL-11 receptor subunit α-1 (IL-11Rα1-deficient mice), a transmembrane receptor that is required conjointly with glycoprotein 130 to transduce IL-11 signaling. Nevertheless, the contribution of IL-11Rα1 to characteristics of nonatopic asthma is unknown. Thus, based on the aforementioned observations, we hypothesized that genetic deficiency of IL-11Rα1 attenuates lung inflammation and increases airway responsiveness after acute inhalation exposure to ozone (O3), a criteria pollutant and nonatopic asthma stimulus. Accordingly, 4 and/or 24 h after cessation of exposure to filtered room air or O3, we assessed lung inflammation and airway responsiveness in wild-type and IL-11Rα1-deficient mice. With the exception of bronchoalveolar lavage macrophages and adiponectin, which were significantly increased and decreased, respectively, in O3-exposed IL-11Rα1-deficient as compared with O3-exposed wild-type mice, no other genotype-related differences in lung inflammation indices that we quantified were observed in O3-exposed mice. However, airway responsiveness to acetyl-ß-methylcholine chloride (methacholine) was significantly diminished in IL-11Rα1-deficient as compared with wild-type mice after O3 exposure. In conclusion, these results demonstrate that IL-11Rα1 minimally contributes to lung inflammation but is required for maximal airway responsiveness to methacholine in a mouse model of nonatopic asthma.


Subject(s)
Asthma , Ozone , Pneumonia , Humans , Mice , Animals , Methacholine Chloride/adverse effects , Ozone/toxicity , Interleukin-11/adverse effects , Asthma/genetics , Pneumonia/chemically induced , Pneumonia/genetics , Pneumonia/complications , Receptors, Interleukin-11 , Bronchoalveolar Lavage Fluid
2.
Physiol Rep ; 5(24)2017 Dec.
Article in English | MEDLINE | ID: mdl-29242308

ABSTRACT

Inhalation of ozone (O3), a gaseous air pollutant, causes lung injury, lung inflammation, and airway hyperresponsiveness. Macrophages, mast cells, and neutrophils contribute to one or more of these sequelae induced by O3 Furthermore, each of these aforementioned cells express chemokine (C-C motif) receptor-like 2 (Ccrl2), an atypical chemokine receptor that facilitates leukocyte chemotaxis. Given that Ccrl2 is expressed by cells essential to the development of O3-induced lung pathology and that chemerin, a Ccrl2 ligand, is increased in bronchoalveolar lavage fluid (BALF) by O3, we hypothesized that Ccrl2 contributes to the development of lung injury, lung inflammation, and airway hyperresponsiveness induced by O3 To that end, we measured indices of lung injury (BALF protein, BALF epithelial cells, and bronchiolar epithelial injury), lung inflammation (BALF cytokines and BALF leukocytes), and airway responsiveness to acetyl-ß-methylcholine chloride (respiratory system resistance) in wild-type and mice genetically deficient in Ccrl2 (Ccrl2-deficient mice) 4 and/or 24 hours following cessation of acute exposure to either filtered room air (air) or O3 In air-exposed mice, BALF chemerin was greater in Ccrl2-deficient as compared to wild-type mice. O3 increased BALF chemerin in mice of both genotypes, yet following O3 exposure, BALF chemerin was greater in Ccrl2-deficient as compared to wild-type mice. O3 increased indices of lung injury, lung inflammation, and airway responsiveness. Nevertheless, no indices were different between genotypes following O3 exposure. In conclusion, we demonstrate that Ccrl2 modulates chemerin levels in the epithelial lining fluid of the lungs but does not contribute to the development of O3-induced lung pathology.


Subject(s)
Asthma/metabolism , Lung Injury/metabolism , Ozone/adverse effects , Receptors, Chemokine/genetics , Animals , Asthma/etiology , Asthma/genetics , Bronchoalveolar Lavage Fluid/cytology , Chemokines/genetics , Chemokines/metabolism , Female , Genotype , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lung Injury/etiology , Lung Injury/genetics , Male , Mice , Mice, Inbred C57BL , Receptors, CCR , Receptors, Chemokine/metabolism , Respiratory Mucosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...