Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Fundam Res ; 4(2): 315-323, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38933515

ABSTRACT

Exploitable or potentially exploitable deposits of critical metals, such as rare-earth (REE) and high-field-strength elements (HFSE), are commonly associated with alkaline or peralkaline igneous rocks. However, the origin, transport and concentration of these metals in peralkaline systems remains poorly understood. This study presents the results of a mineralogical and geochemical investigation of the Na-metasomatism of alkali amphiboles and clinopyroxenes from a barren peralkaline granite pluton in NE China, to assess the remobilization and redistribution of REE and HFSE during magmatic-hydrothermal evolution. Alkali amphiboles and aegirine-augites from the peralkaline granites show evolutionary trends from sodic-calcic to sodic compositions, with increasing REE and HFSE concentrations as a function of increasing Na-index [Na#, defined as molar Na/(Na+Ca) ratios]. The Na-amphiboles (i.e., arfvedsonite) and aegirine-augites can be subsequently altered, or breakdown, to form hydrothermal aegirine during late- or post-magmatic alteration. Representative compositions analyzed by in-situ LA-ICPMS show that the primary aegirine-augites have high and variable REE (2194-3627 ppm) and HFSE (4194-16,862 ppm) contents, suggesting that these critical metals can be scavenged by alkali amphiboles and aegirine-augites. Compared to the primary aegirine-augites, the presentative early replacement aegirine (Aeg-I, Na# = 0.91-0.94) has notably lower REE (1484-1972) and HFSE (4351-5621) contents. In contrast, the late hydrothermal aegirine (Aeg-II, Na# = 0.92-0.96) has significantly lower REE (317-456 ppm) and HFSE (6.44-72.2 ppm) contents. Given that the increasing Na# from aegirine-augites to hydrothermal aegirines likely resulted from Na-metasomatism, a scavenging-release model can explain the remobilization of REE and HFSE in peralkaline granitic systems. The scavenging and release of REE and HFSE by Na-metasomatism provides key insights into the genesis of globally significant REE and HFSE deposits. The high Na-index of the hydrothermal aegirine might be useful as a geochemical indicator in the exploration for these critical-metals.

2.
Sci Adv ; 6(17): eaaz0424, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32494633

ABSTRACT

Quantifying the compositional evolution of mantle-derived melts from source to surface is fundamental for constraining the nature of primary melts and deep Earth composition. Despite abundant evidence for interaction between carbonate-rich melts, including diamondiferous kimberlites, and mantle wall rocks en route to surface, the effects of this interaction on melt compositions are poorly constrained. Here, we demonstrate a robust linear correlation between the Mg/Si ratios of kimberlites and their entrained mantle components and between Mg/Fe ratios of mantle-derived olivine cores and magmatic olivine rims in kimberlites worldwide. Combined with numerical modeling, these findings indicate that kimberlite melts with highly variable composition were broadly similar before lithosphere assimilation. This implies that kimberlites worldwide originated by partial melting of compositionally similar convective mantle sources under comparable physical conditions. We conclude that mantle assimilation markedly alters the major element composition of carbonate-rich melts and is a major process in the evolution of mantle-derived magmas.

3.
Acta Crystallogr B ; 60(Pt 5): 496-501, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15367784

ABSTRACT

The crystal structures of members of the geikielite-ecandrewsite solid solution series, Mg(1 - x)Zn(x)TiO(3) (0 < or = x

SELECTION OF CITATIONS
SEARCH DETAIL
...