Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
2.
Hum Genomics ; 18(1): 26, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491524

ABSTRACT

BACKGROUND: 'Benign ethnic neutropenia' (BEN) is a heritable condition characterized by lower neutrophil counts, predominantly observed in individuals of African ancestry, and the genetic basis of BEN remains a subject of extensive research. In this study, we aimed to dissect the genetic architecture underlying neutrophil count variation through a linear-mixed model genome-wide association study (GWAS) in a population of African ancestry (N = 5976). Malaria caused by P. falciparum imposes a tremendous public health burden on people living in sub-Saharan Africa. Individuals living in malaria endemic regions often have a reduced circulating neutrophil count due to BEN, raising the possibility that reduced neutrophil counts modulate severity of malaria in susceptible populations. As a follow-up, we tested this hypothesis by conducting a Mendelian randomization (MR) analysis of neutrophil counts on severe malaria (MalariaGEN, N = 17,056). RESULTS: We carried out a GWAS of neutrophil count in individuals associated to an African continental ancestry group within UK Biobank, identifying 73 loci (r2 = 0.1) and 10 index SNPs (GCTA-COJO loci) associated with neutrophil count, including previously unknown rare loci regulating neutrophil count in a non-European population. BOLT-LMM was reliable when conducted in a non-European population, and additional covariates added to the model did not largely alter the results of the top loci or index SNPs. The two-sample bi-directional MR analysis between neutrophil count and severe malaria showed the greatest evidence for an effect between neutrophil count and severe anaemia, although the confidence intervals crossed the null. CONCLUSION: Our GWAS of neutrophil count revealed unique loci present in individuals of African ancestry. We note that a small sample-size reduced our power to identify variants with low allele frequencies and/or low effect sizes in our GWAS. Our work highlights the need for conducting large-scale biobank studies in Africa and for further exploring the link between neutrophils and severe malaria.


Subject(s)
Genome-Wide Association Study , Malaria , Humans , Genome-Wide Association Study/methods , Neutrophils , Black People/genetics , Malaria/epidemiology , Malaria/genetics , Gene Frequency , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease
3.
Int J Cancer ; 154(1): 94-103, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37578112

ABSTRACT

Observational studies have suggested a protective role for eosinophils in colorectal cancer (CRC) development and implicated neutrophils, but the causal relationships remain unclear. Here, we aimed to estimate the causal effect of circulating white blood cell (WBC) counts (N = ~550 000) for basophils, eosinophils, monocytes, lymphocytes and neutrophils on CRC risk (N = 52 775 cases and 45 940 controls) using Mendelian randomisation (MR). For comparison, we also examined this relationship using individual-level data from UK Biobank (4043 incident CRC cases and 332 773 controls) in a longitudinal cohort analysis. The inverse-variance weighted (IVW) MR analysis suggested a protective effect of increased basophil count and eosinophil count on CRC risk [OR per 1-SD increase: 0.88, 95% CI: 0.78-0.99, P = .04; OR: 0.93, 95% CI: 0.88-0.98, P = .01]. The protective effect of eosinophils remained [OR per 1-SD increase: 0.88, 95% CI: 0.80-0.97, P = .01] following adjustments for all other WBC subtypes, to account for genetic correlation between the traits, using multivariable MR. A protective effect of increased lymphocyte count on CRC risk was also found [OR: 0.84, 95% CI: 0.76-0.93, P = 6.70e-4] following adjustment. Consistent with MR results, a protective effect for eosinophils in the cohort analysis in the fully adjusted model [RR per 1-SD increase: 0.96, 95% CI: 0.93-0.99, P = .02] and following adjustment for the other WBC subtypes [RR: 0.96, 95% CI: 0.93-0.99, P = .001] was observed. Our study implicates peripheral blood immune cells, in particular eosinophils and lymphocytes, in CRC development, highlighting a need for mechanistic studies to interrogate these relationships.


Subject(s)
Colorectal Neoplasms , Eosinophils , Humans , Leukocyte Count , Neutrophils , Phenotype , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Mendelian Randomization Analysis/methods , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide
4.
Nat Commun ; 14(1): 6172, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794016

ABSTRACT

Atopic dermatitis (AD) is a common inflammatory skin condition and prior genome-wide association studies (GWAS) have identified 71 associated loci. In the current study we conducted the largest AD GWAS to date (discovery N = 1,086,394, replication N = 3,604,027), combining previously reported cohorts with additional available data. We identified 81 loci (29 novel) in the European-only analysis (which all replicated in a separate European analysis) and 10 additional loci in the multi-ancestry analysis (3 novel). Eight variants from the multi-ancestry analysis replicated in at least one of the populations tested (European, Latino or African), while two may be specific to individuals of Japanese ancestry. AD loci showed enrichment for DNAse I hypersensitivity and eQTL associations in blood. At each locus we prioritised candidate genes by integrating multi-omic data. The implicated genes are predominantly in immune pathways of relevance to atopic inflammation and some offer drug repurposing opportunities.


Subject(s)
Dermatitis, Atopic , Genome-Wide Association Study , Humans , Dermatitis, Atopic/genetics , Genetic Predisposition to Disease/genetics , Hispanic or Latino/genetics , Black People , Polymorphism, Single Nucleotide
5.
Food Qual Saf ; 7: fyad032, 2023.
Article in English | MEDLINE | ID: mdl-37744965

ABSTRACT

Food and water are the main sources of human exposure to arsenic. It is important to determine arsenic species in food because the toxicities of arsenic vary greatly with its chemical speciation. Extensive research has focused on high concentrations of arsenic species in marine organisms. The concentrations of arsenic species in freshwater fish are much lower, and their determination presents analytical challenges. In this review, we summarize the current state of knowledge on arsenic speciation in freshwater fish and discuss challenges and research needs. Fish samples are typically homogenized, and arsenic species are extracted using water/methanol with the assistance of sonication and enzyme treatment. Arsenic species in the extracts are commonly separated using high-performance liquid chromatography (HPLC) and detected using inductively coupled plasma mass spectrometry (ICPMS). Electrospray ionization tandem mass spectrometry, used in combination with HPLC and ICPMS, provides complementary information for the identification and characterization of arsenic species. The methods and perspectives discussed in this review, covering sample preparation, chromatography separation, and mass spectrometry detection, are directed to arsenic speciation in freshwater fish and applicable to studies of other food items. Despite progress made in arsenic speciation analysis, a large fraction of the total arsenic in freshwater fish remains unidentified. It is challenging to identify and quantify arsenic species present in complex sample matrices at very low concentrations. Further research is needed to improve the extraction efficiency, chromatographic resolution, detection sensitivity, and characterization capability.

6.
Am J Epidemiol ; 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37414746

ABSTRACT

HO-1 is a key enzyme in the management of heme in humans. A GT(n) repeat length in the gene HMOX1, has previously been widely associated with a variety of phenotypes, including susceptibility and outcomes in diabetes, cancer, infections, and neonatal jaundice. However, studies are generally small and results inconsistent. In this study, we imputed the GT(n) repeat length in two European cohorts (UK Biobank, UK, n = 463,005, recruited 2006-onwards; and Avon Longitudinal Study of Parents and Children, ALSPAC, UK, n = 937, recruited 1990 onwards), with the reliability of imputation tested in other cohorts (1000 Genomes, Human Genome Diversity Project and UK-Personal Genome Project). Subsequently, we measured the relationship between repeat length and previously identified associations (diabetes, COPD, pneumonia and infection related mortality in UK Biobank; neonatal jaundice in ALSPAC) and performed a phenome-wide association study (PheWAS) in UK Biobank. Despite high quality imputation (correlation between true repeat length and imputed repeat length >0.9 in test cohorts), clinical associations were not identified in either the PheWAS or specific association studies. These findings are robust to definitions of repeat length and sensitivity analyses. Despite multiple smaller studies identifying associations across a variety of clinical settings; we could not replicate or identify any relevant phenotypic associations with the HMOX1 GT(n) repeat.

7.
BMJ Glob Health ; 8(5)2023 05.
Article in English | MEDLINE | ID: mdl-37160371

ABSTRACT

While artificial intelligence (AI) offers promising solutions in healthcare, it also poses a number of threats to human health and well-being via social, political, economic and security-related determinants of health. We describe three such main ways misused narrow AI serves as a threat to human health: through increasing opportunities for control and manipulation of people; enhancing and dehumanising lethal weapon capacity and by rendering human labour increasingly obsolescent. We then examine self-improving 'artificial general intelligence' (AGI) and how this could pose an existential threat to humanity itself. Finally, we discuss the critical need for effective regulation, including the prohibition of certain types and applications of AI, and echo calls for a moratorium on the development of self-improving AGI. We ask the medical and public health community to engage in evidence-based advocacy for safe AI, rooted in the precautionary principle.


Subject(s)
Artificial Intelligence , Labor, Obstetric , Humans , Pregnancy , Female , Public Health
8.
Sci Rep ; 13(1): 2867, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36808173

ABSTRACT

Iron deficiency is associated with a substantial burden of morbidity. However, supplementation of iron has been linked to increased rates of serious infection in randomised trials of children in sub-Saharan Africa. Randomised trials in other settings have been inconclusive and it is unknown if changes in levels of iron biomarkers are linked to sepsis in these other settings. We used genetic variants associated with levels of iron biomarkers as instrumental variables in a Mendelian randomisation (MR) analysis to test the hypothesis that increasing levels of iron biomarkers increase the risk of sepsis. In observational and MR analyses we found that increases in iron biomarkers increase the odds of sepsis. In stratified analyses, we show that this risk may be larger in those with iron deficiency and/or anaemia. Taken together, results here suggest a required caution in supplementation of iron and underline the role of iron homeostasis in severe infection.


Subject(s)
Anemia, Iron-Deficiency , Iron Deficiencies , Sepsis , Child , Humans , Iron , Biomarkers , Mendelian Randomization Analysis
9.
PLoS Genet ; 19(2): e1010596, 2023 02.
Article in English | MEDLINE | ID: mdl-36821633

ABSTRACT

Genetic studies of disease progression can be used to identify factors that may influence survival or prognosis, which may differ from factors that influence on disease susceptibility. Studies of disease progression feed directly into therapeutics for disease, whereas studies of incidence inform prevention strategies. However, studies of disease progression are known to be affected by collider (also known as "index event") bias since the disease progression phenotype can only be observed for individuals who have the disease. This applies equally to observational and genetic studies, including genome-wide association studies and Mendelian randomisation (MR) analyses. In this paper, our aim is to review several statistical methods that can be used to detect and adjust for index event bias in studies of disease progression, and how they apply to genetic and MR studies using both individual- and summary-level data. Methods to detect the presence of index event bias include the use of negative controls, a comparison of associations between risk factors for incidence in individuals with and without the disease, and an inspection of Miami plots. Methods to adjust for the bias include inverse probability weighting (with individual-level data), or Slope-Hunter and Dudbridge et al.'s index event bias adjustment (when only summary-level data are available). We also outline two approaches for sensitivity analysis. We then illustrate how three methods to minimise bias can be used in practice with two applied examples. Our first example investigates the effects of blood lipid traits on mortality from coronary heart disease, while our second example investigates genetic associations with breast cancer mortality.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Bias , Risk Factors , Phenotype , Mendelian Randomization Analysis/methods , Disease Progression
10.
Int J Infect Dis ; 129: 251-259, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36801374

ABSTRACT

OBJECTIVES: Severe malaria remains a deadly disease for many young children in low- and middle-income countries. Levels of interleukin (IL)-6 have been shown to identify cases of severe malaria and associate with severity, but it is unknown if this association is causal. METHODS: A single nucleotide polymorphism (SNP; rs2228145) in the IL-6 receptor was chosen as a genetic variant that is known to alter IL-6 signaling. We tested this, then took this forward as an instrument to perform Mendelian randomization (MR) in MalariaGEN, a large cohort study of patients with severe malaria at 11 worldwide sites. RESULTS: In MR analyses using rs2228145, we did not identify an effect of decreased IL-6 signaling on severe malaria (odds ratio 1.14, 95% confidence interval 0.56-2.34, P = 0.713). The estimates of the association with any severe malaria subphenotype were similarly null, although with some imprecision. Further analyses using other MR approaches had similar results. CONCLUSION: These analyses do not support a causal role for IL-6 signaling in the development of severe malaria. This result suggests IL-6 may not be causal for severe outcomes in malaria, and that therapeutic manipulation of IL-6 is unlikely to be a suitable treatment for severe malaria.


Subject(s)
Interleukin-6 , Malaria , Child , Humans , Child, Preschool , Interleukin-6/genetics , Mendelian Randomization Analysis , Cohort Studies , Malaria/genetics , Polymorphism, Single Nucleotide , Genome-Wide Association Study
11.
Elife ; 122023 01 24.
Article in English | MEDLINE | ID: mdl-36692910

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody levels can be used to assess humoral immune responses following SARS-CoV-2 infection or vaccination, and may predict risk of future infection. Higher levels of SARS-CoV-2 anti-Spike antibodies are known to be associated with increased protection against future SARS-CoV-2 infection. However, variation in antibody levels and risk factors for lower antibody levels following each round of SARS-CoV-2 vaccination have not been explored across a wide range of socio-demographic, SARS-CoV-2 infection and vaccination, and health factors within population-based cohorts. Methods: Samples were collected from 9361 individuals from TwinsUK and ALSPAC UK population-based longitudinal studies and tested for SARS-CoV-2 antibodies. Cross-sectional sampling was undertaken jointly in April-May 2021 (TwinsUK, N=4256; ALSPAC, N=4622), and in TwinsUK only in November 2021-January 2022 (N=3575). Variation in antibody levels after first, second, and third SARS-CoV-2 vaccination with health, socio-demographic, SARS-CoV-2 infection, and SARS-CoV-2 vaccination variables were analysed. Using multivariable logistic regression models, we tested associations between antibody levels following vaccination and: (1) SARS-CoV-2 infection following vaccination(s); (2) health, socio-demographic, SARS-CoV-2 infection, and SARS-CoV-2 vaccination variables. Results: Within TwinsUK, single-vaccinated individuals with the lowest 20% of anti-Spike antibody levels at initial testing had threefold greater odds of SARS-CoV-2 infection over the next 6-9 months (OR = 2.9, 95% CI: 1.4, 6.0), compared to the top 20%. In TwinsUK and ALSPAC, individuals identified as at increased risk of COVID-19 complication through the UK 'Shielded Patient List' had consistently greater odds (two- to fourfold) of having antibody levels in the lowest 10%. Third vaccination increased absolute antibody levels for almost all individuals, and reduced relative disparities compared with earlier vaccinations. Conclusions: These findings quantify the association between antibody level and risk of subsequent infection, and support a policy of triple vaccination for the generation of protective antibodies. Funding: Antibody testing was funded by UK Health Security Agency. The National Core Studies program is funded by COVID-19 Longitudinal Health and Wellbeing - National Core Study (LHW-NCS) HMT/UKRI/MRC ([MC_PC_20030] and [MC_PC_20059]). Related funding was also provided by the NIHR 606 (CONVALESCENCE grant [COV-LT-0009]). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. The UK Medical Research Council and Wellcome (Grant ref: [217065/Z/19/Z]) and the University of Bristol provide core support for ALSPAC.


Vaccination against the virus that causes COVID-19 triggers the body to produce antibodies that help fight future infections. But some people generate more antibodies after vaccination than others. People with lower levels of antibodies are more likely to get COVID-19 in the future. Identifying people with low antibody levels after COVID-19 vaccination is important. It could help decide who receives priority for future vaccination. Previous studies show that people with certain health conditions produce fewer antibodies after one or two doses of a COVID-19 vaccine. For example, people with weakened immune systems. Now that third booster doses are available, it is vital to determine if they increase antibody levels for those most at risk of severe COVID-19. Cheetham et al. show that a third booster dose of a COVID-19 vaccine boosts antibodies to high levels in 90% of individuals, including those at increased risk. In the experiments, Cheetham et al. measured antibodies against the virus that causes COVID-19 in 9,361 individuals participating in two large long-term health studies in the United Kingdom. The experiments found that UK individuals advised to shield from the virus because they were at increased risk of complications had lower levels of antibodies after one or two vaccine doses than individuals without such risk factors. This difference was also seen after a third booster dose, but overall antibody levels had large increases. People who received the Oxford/AstraZeneca vaccine as their first dose also had lower antibody levels after one or two doses than those who received the Pfizer/BioNTech vaccine first. Positively, this difference in antibody levels was no longer seen after a third booster dose. Individuals with lower antibody levels after their first dose were also more likely to have a case of COVID-19 in the following months. Antibody levels were high in most individuals after the third dose. The results may help governments and public health officials identify individuals who may need extra protection after the first two vaccine doses. They also support current policies promoting booster doses of the vaccine and may support prioritizing booster doses for those at the highest risk from COVID-19 in future vaccination campaigns.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cross-Sectional Studies , Risk Factors , Antibodies, Viral , London , Longitudinal Studies , Vaccination
12.
PLoS Med ; 20(1): e1004174, 2023 01.
Article in English | MEDLINE | ID: mdl-36716318

ABSTRACT

BACKGROUND: Sepsis is characterised by dysregulated, life-threatening immune responses, which are thought to be driven by cytokines such as interleukin 6 (IL-6). Genetic variants in IL6R known to down-regulate IL-6 signalling are associated with improved Coronavirus Disease 2019 (COVID-19) outcomes, a finding later confirmed in randomised trials of IL-6 receptor antagonists (IL6RAs). We hypothesised that blockade of IL6R could also improve outcomes in sepsis. METHODS AND FINDINGS: We performed a Mendelian randomisation (MR) analysis using single nucleotide polymorphisms (SNPs) in and near IL6R to evaluate the likely causal effects of IL6R blockade on sepsis (primary outcome), sepsis severity, other infections, and COVID-19 (secondary outcomes). We weighted SNPs by their effect on CRP and combined results across them in inverse variance weighted meta-analysis, proxying the effect of IL6RA. Our outcomes were measured in UK Biobank, FinnGen, the COVID-19 Host Genetics Initiative (HGI), and the GenOSept and GainS consortium. We performed several sensitivity analyses to test assumptions of our methods, including utilising variants around CRP and gp130 in a similar analysis. In the UK Biobank cohort (N = 486,484, including 11,643 with sepsis), IL6R blockade was associated with a decreased risk of our primary outcome, sepsis (odds ratio (OR) = 0.80; 95% confidence interval (CI) 0.66 to 0.96, per unit of natural log-transformed CRP decrease). The size of this effect increased with severity, with larger effects on 28-day sepsis mortality (OR = 0.74; 95% CI 0.47 to 1.15); critical care admission with sepsis (OR = 0.48, 95% CI 0.30 to 0.78) and critical care death with sepsis (OR = 0.37, 95% CI 0.14 to 0.98). Similar associations were seen with severe respiratory infection: OR for pneumonia in critical care 0.69 (95% CI 0.49 to 0.97) and for sepsis survival in critical care (OR = 0.22; 95% CI 0.04 to 1.31) in the GainS and GenOSept consortium, although this result had a large degree of imprecision. We also confirm the previously reported protective effect of IL6R blockade on severe COVID-19 (OR = 0.69, 95% CI 0.57 to 0.84) in the COVID-19 HGI, which was of similar magnitude to that seen in sepsis. Sensitivity analyses did not alter our primary results. These results are subject to the limitations and assumptions of MR, which in this case reflects interpretation of these SNP effects as causally acting through blockade of IL6R, and reflect lifetime exposure to IL6R blockade, rather than the effect of therapeutic IL6R blockade. CONCLUSIONS: IL6R blockade is causally associated with reduced incidence of sepsis. Similar but imprecisely estimated results supported a causal effect also on sepsis related mortality and critical care admission with sepsis. These effects are comparable in size to the effect seen in severe COVID-19, where IL-6 receptor antagonists were shown to improve survival. These data suggest that a randomised trial of IL-6 receptor antagonists in sepsis should be considered.


Subject(s)
COVID-19 , Sepsis , Humans , Interleukin-6/genetics , Hospitalization , Receptors, Interleukin-6/genetics , Sepsis/drug therapy , Sepsis/genetics , Mendelian Randomization Analysis
13.
Arthritis Care Res (Hoboken) ; 75(3): 674-681, 2023 03.
Article in English | MEDLINE | ID: mdl-34748291

ABSTRACT

OBJECTIVES: Observational studies report mixed findings regarding the association between vitamin D and juvenile idiopathic arthritis (JIA) incidence or activity; however, such studies are susceptible to considerable bias. Because low vitamin D levels are common within the general population and easily corrected, there is potential public health benefit in identifying a causal association between vitamin D insufficiency and JIA incidence. To limit bias due to confounding and reverse causation, we examined the causal effect of the major circulating form of vitamin D, 25-hydroxy vitamin D (25-[OH]D), on JIA incidence using Mendelian randomization (MR). METHODS: In this 2-sample MR analysis, we used summary level data from the largest and most recent genome-wide association study of 25-(OH)D levels (sample size 443,734), alongside summary data from 2 JIA genetic studies (sample sizes 15,872 and 12,501), all from European populations. To test and account for potential bias due to pleiotropy, we employed multiple MR methods and sensitivity analyses. RESULTS: We found no evidence of a causal relationship between genetically predicted 25-(OH)D levels and JIA incidence (odds ratio 1.00 [95% confidence interval (95% CI) 0.76, 1.33] per SD increase in standardized natural-log transformed 25-[OH]D levels). This estimate was consistent across all methods tested. Additionally, there was no evidence that genetically predicted JIA causally influences 25-(OH)D levels (-0.002 SD change in standardized natural-log transformed 25-[OH]D levels per doubling odds in genetically predicted JIA [95% CI -0.006, 0.002]). CONCLUSION: Given the lack of a causal relationship between 25-(OH)D levels and JIA, population level vitamin D supplementation is unlikely to reduce JIA incidence.


Subject(s)
Arthritis, Juvenile , Humans , Arthritis, Juvenile/diagnosis , Arthritis, Juvenile/epidemiology , Arthritis, Juvenile/genetics , Mendelian Randomization Analysis/methods , Genome-Wide Association Study , Vitamin D , Polymorphism, Single Nucleotide
14.
Mol Psychiatry ; 28(3): 1004-1019, 2023 03.
Article in English | MEDLINE | ID: mdl-36577838

ABSTRACT

INTRODUCTION: Meta-analyses implicate immune dysfunction in depression confirming increased levels of circulating immune proteins (e.g., cytokines) in depression cases compared to controls. White blood cells (WBC) both produce and are influenced by cytokines, and play key roles in orchestrating innate and adaptive immune responses, but their role in depression remains unclear. Therefore, a systematic review of studies of various WBC subsets in depression is required for a greater understanding of the nature of immune dysfunction in this illness. METHODS: We searched PubMed and PsycINFO databases (inception to 5th April 2022) and conducted a systematic review and meta-analysis of identified studies comparing absolute count and/or relative percentage of flow cytometry-derived WBC subsets between depression cases and controls. Selected studies were quality assessed. Random-effect meta-analysis was performed. RESULTS: Thirty-three studies were included and 27 studies (n = 2277) were meta-analysed. We report an increase in mean absolute counts of WBC (seven studies; standardised mean difference [SMD] = 1.07; 95% CI, 0.61-1.53; P < 0.01; I2 = 64%), granulocytes (two studies; SMD = 2.07; 95% CI, 1.45-2.68; P < 0.01; I2 = 0%), neutrophils (four studies; SMD = 0.91; 95% CI, 0.23-1.58; P < 0.01; I2 = 82%), monocytes (seven studies; SMD = 0.60; 95% CI, 0.19-1.01; P < 0.01; I2 = 66%), CD4+ helper T cells (11 studies; SMD = 0.30; 95% CI, 0.15-0.45; P < 0.01; I2 = 0%), natural killer cells (11 studies; SMD = 1.23; 95% CI, 0.38-2.08; P < 0.01; I2 = 95%), B cells (10 studies; SMD = 0.30; 95% CI, 0.03-0.57; P = 0.03; I2 = 56%), and activated T cells (eight studies; SMD = 0.45; 95% CI, 0.24-0.66; P < 0.01; I2 = 0%) in depression, compared to controls. Fewer studies reported relative percentage, indicating increased neutrophils and decreased total lymphocytes, Th1, and Th2 cells in depression. CONCLUSIONS: Depression is characterised by widespread alterations in circulating myeloid and lymphoid cells, consistent with dysfunction in both innate and adaptive immunity. Immune cells could be useful biomarkers for illness subtyping and patient stratification in future immunotherapy trials of depression, along with cytokines, other biomarkers, and clinical measures.


Subject(s)
Depression , Humans , Biomarkers
15.
Malar J ; 21(1): 342, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36397106

ABSTRACT

BACKGROUND: Inducible expression of heme oxygenase-1 (encoded by the gene HMOX1) may determine protection from heme released during malaria infections. A variable length, short tandem GT(n) repeat (STR) in HMOX1 that may influence gene expression has been associated with outcomes of human malaria in some studies. In this study, an analysis of the association between variation at the STR in HMOX1 on severe malaria and severe malaria subtypes is presented in a large, prospectively collected dataset (MalariaGEN). METHODS: The HMOX1 STR was imputed using a recently developed reference haplotype panel designed for STRs. The STR was classified by total length and split into three alleles based on an observed trimodal distribution of repeat lengths. Logistic regression was used to assess the association between this repeat on cases of severe malaria and severe malaria subtypes (cerebral malaria and severe malarial anaemia). Individual analyses were performed for each MalariaGEN collection site and combined for meta-analysis. One site (Kenya), had detailed clinical metadata, allowing the assessment of the effect of the STR on clinical variables (e.g. parasite count, platelet count) and regression analyses were performed to investigate whether the STR interacted with any clinical variables. RESULTS: Data from 17,960 participants across 11 collection sites were analysed. In logistic regression, there was no strong evidence of association between STR length and severe malaria (Odds Ratio, OR: 0.96, 95% confidence intervals 0.91-1.02 per ten GT(n) repeats), although there did appear to be an association at some sites (e.g., Kenya, OR 0.90, 95% CI 0.82-0.99). There was no evidence of an interaction with any clinical variables. CONCLUSIONS: Meta-analysis suggested that increasing HMOX1 STR length is unlikely to be reliably associated with severe malaria. It cannot be ruled out that repeat length may alter risk in specific populations, although whether this is due to chance variation, or true variation due to underlying biology (e.g., gene vs environment interaction) remains unanswered.


Subject(s)
Heme Oxygenase-1 , Malaria, Cerebral , Humans , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Genetic Predisposition to Disease , Polymorphism, Genetic , Alleles , Malaria, Cerebral/genetics
16.
Nat Commun ; 13(1): 3528, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35764621

ABSTRACT

The frequency of, and risk factors for, long COVID are unclear among community-based individuals with a history of COVID-19. To elucidate the burden and possible causes of long COVID in the community, we coordinated analyses of survey data from 6907 individuals with self-reported COVID-19 from 10 UK longitudinal study (LS) samples and 1.1 million individuals with COVID-19 diagnostic codes in electronic healthcare records (EHR) collected by spring 2021. Proportions of presumed COVID-19 cases in LS reporting any symptoms for 12+ weeks ranged from 7.8% and 17% (with 1.2 to 4.8% reporting debilitating symptoms). Increasing age, female sex, white ethnicity, poor pre-pandemic general and mental health, overweight/obesity, and asthma were associated with prolonged symptoms in both LS and EHR data, but findings for other factors, such as cardio-metabolic parameters, were inconclusive.


Subject(s)
COVID-19 , Electronic Health Records , COVID-19/complications , COVID-19/epidemiology , Female , Humans , Longitudinal Studies , Risk Factors , Surveys and Questionnaires , United Kingdom/epidemiology , Post-Acute COVID-19 Syndrome
17.
PLoS One ; 17(5): e0267399, 2022.
Article in English | MEDLINE | ID: mdl-35551540

ABSTRACT

INTRODUCTION: Heme-oxygenase 1 (HMOX1) is a critical stress response gene that catalyzes the multistep oxidation of heme. A GT(n) repeat of variable length in the promoter in has been associated with a wide range of human diseases, including infections. This paper aims to summarise and systematically review associations between the length of the HMOX1 GT(n) promoter and infectious disease in humans. METHODS: A search using relevant terms was performed in PubMED and EMBASE through to 15/01/21 identifying all research that studied an association between the HMOX1 GT(n) repeat polymorphism and the incidence and/or outcome of any human infectious disease. Citations were screened for additional studies. Potential studies were screened for inclusion by two authors. Data was extracted on allele frequency, genotype, strength of association, mechanism of genotyping, and potential biases. A narrative review was performed across each type of infection. RESULTS: 1,533 studies were identified in the search, and one via citation screening. Sixteen studies were ultimately included, seven in malaria, three in HIV, three in sepsis, and one each in pneumonia, hepatitis C, and acute respiratory distress syndrome (ARDS). Sample sizes for nearly all studies were small (biggest study, n = 1,646). Allelic definition was different across all included studies. All studies were at some risk of bias. In malaria, three studies suggested that longer alleles were associated with reduced risk of severe malaria, particularly malaria-induced renal dysfunction, with four studies identifying a null association. In sepsis, two studies suggested an association with longer alleles and better outcomes. CONCLUSIONS: Despite the importance of HMOX1 in survival from infection, and the association between repeat length and gene expression, the clinical data supporting an association between repeat length and incidence and/or outcome of infection remain inconclusive.


Subject(s)
Communicable Diseases , Sepsis , Communicable Diseases/genetics , Genetic Predisposition to Disease , Heme , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Polymorphism, Genetic , Sepsis/genetics
18.
J Neurosurg Pediatr ; 29(5): 520-527, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35148507

ABSTRACT

OBJECTIVE: Holmes tremor (HT) is a rare and debilitating movement disorder comprising both rest and action tremor, and it is known for its resistance to treatment. Its most common causes include ischemic or hemorrhagic insults and trauma. Mechanistically, the combined rest and action tremor is thought to require a double lesion of both the dopaminergic nigrostriatal system and the dentatorubrothalamic pathways, often near the midbrain where both pathways converge. The aim of this study was to characterize HT as a presenting sign in cases of hydrocephalus and to discuss potential pathomechanisms, clinical presentations, and treatment options. METHODS: MEDLINE and Web of Science were searched for cases of HT with hydrocephalus from database inception to August 2021, and these were compiled along with the authors' own unique case of treatment-responsive HT in a child with low-pressure obstructive hydrocephalus secondary to a tectal tumor. Patient characteristics, presenting signs/symptoms, potential precipitating factors, interventions, and patient outcomes were recorded. RESULTS: Nine patients were identified including the authors' video case report. All patients had a triventriculomegaly pattern with at least a component of obstructive hydrocephalus, and 4 patients were identified as having low-pressure hydrocephalus. Parinaud's syndrome and bradykinesia were the most commonly associated signs. Levodopa and CSF diversion were the most commonly used and effective treatments for HT in this population. This review was not registered and did not receive any funding. CONCLUSIONS: HT is a poorly understood and probably underrecognized presentation of hydrocephalus that is difficult to treat, limiting the strength of the evidence in this review. Treatment options include CSF diversion, antiparkinsonian agents, antiepileptic agents, deep brain stimulation, and MR-guided focused ultrasound, and aim toward the nigrostriatal and dentatorubrothalamic pathways hypothesized to be involved in its pathophysiology.


Subject(s)
Hydrocephalus , Movement Disorders , Humans , Child , Tremor/diagnostic imaging , Tremor/etiology , Tremor/therapy , Brain , Hydrocephalus/complications , Hydrocephalus/diagnostic imaging , Treatment Outcome
19.
Hum Genomics ; 16(1): 3, 2022 01 29.
Article in English | MEDLINE | ID: mdl-35093177

ABSTRACT

BACKGROUND: The UK Biobank is a large prospective cohort, based in the UK, that has deep phenotypic and genomic data on roughly a half a million individuals. Included in this resource are data on approximately 78,000 individuals with "non-white British ancestry." While most epidemiology studies have focused predominantly on populations of European ancestry, there is an opportunity to contribute to the study of health and disease for a broader segment of the population by making use of the UK Biobank's "non-white British ancestry" samples. Here, we present an empirical description of the continental ancestry and population structure among the individuals in this UK Biobank subset. RESULTS: Reference populations from the 1000 Genomes Project for Africa, Europe, East Asia, and South Asia were used to estimate ancestry for each individual. Those with at least 80% ancestry in one of these four continental ancestry groups were taken forward (N = 62,484). Principal component and K-means clustering analyses were used to identify and characterize population structure within each ancestry group. Of the approximately 78,000 individuals in the UK Biobank that are of "non-white British" ancestry, 50,685, 6653, 2782, and 2364 individuals were associated to the European, African, South Asian, and East Asian continental ancestry groups, respectively. Each continental ancestry group exhibits prominent population structure that is consistent with self-reported country of birth data and geography. CONCLUSIONS: Methods outlined here provide an avenue to leverage UK Biobank's deeply phenotyped data allowing researchers to maximize its potential in the study of health and disease in individuals of non-white British ancestry.


Subject(s)
Biological Specimen Banks , Black People , Black People/genetics , Humans , Prospective Studies , United Kingdom/epidemiology , White People/genetics
20.
Am J Hum Genet ; 108(12): 2259-2270, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34741802

ABSTRACT

Developing functional insight into the causal molecular drivers of immunological disease is a critical challenge in genomic medicine. Here, we systematically apply Mendelian randomization (MR), genetic colocalization, immune-cell-type enrichment, and phenome-wide association methods to investigate the effects of genetically predicted gene expression on ten immune-associated diseases and four cancer outcomes. Using whole blood-derived estimates for regulatory variants from the eQTLGen consortium (n = 31,684), we constructed genetic risk scores for 10,104 genes. Applying the inverse-variance-weighted MR method transcriptome wide while accounting for linkage disequilibrium structure identified 664 unique genes with evidence of a genetically predicted effect on at least one disease outcome (p < 4.81 × 10-5). We next undertook genetic colocalization to investigate cell-type-specific effects at these loci by using gene expression data derived from 18 types of immune cells. This highlighted many cell-type-dependent effects, such as PRKCQ expression and asthma risk (posterior probability = 0.998), which was T cell specific. Phenome-wide analyses on 311 complex traits and endpoints allowed us to explore shared genetic architecture and prioritize key drivers of disease risk, such as CASP10, which provided evidence of an effect on seven cancer-related outcomes. Our atlas of results can be used to characterize known and novel loci in immune-associated disease and cancer susceptibility, both in terms of elucidating cell-type-dependent effects as well as dissecting shared disease pathways and pervasive pleiotropy. As an exemplar, we have highlighted several key findings in this study, although similar evaluations can be conducted via our interactive web platform.


Subject(s)
Genomic Medicine , Immune System Diseases/genetics , Neoplasms/genetics , Phenomics , Gene Expression Profiling , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Mendelian Randomization Analysis , Outcome Assessment, Health Care , Quantitative Trait Loci , Risk Factors , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...