Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Endocrinol Metab ; 313(6): E681-E689, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28811296

ABSTRACT

Current methods to quantify in vivo RNA dynamics are limited. Here, we developed a novel stable isotope (D2O) methodology to quantify RNA synthesis (i.e., ribosomal biogenesis) in cells, animal models, and humans. First, proliferating C2C12 cells were incubated in D2O-enriched media and myotubes ±50 ng/ml IGF-I. Second, rat quadriceps (untrained, n = 9; 7-wk interval-"like" training, n = 13) were collected after ~3-wk D2O (70 atom %) administration, with body-water enrichment monitored via blood sampling. Finally, 10 (23 ± 1 yr) men consumed 150-ml D2O followed by 50 ml/wk and undertook 6-wk resistance exercise (6 × 8 repetitions, 75% 1-repetition maximum 3/wk) with body-water enrichment monitored by saliva sampling and muscle biopsies (for determination of RNA synthesis) at 0, 3, and 6 wk. Ribose mole percent excess (r-MPE) from purine nucleotides was analyzed via GC-MS/MS. Proliferating C2C12 cell r-MPE exhibited a rise to plateau, whereas IGF-I increased myotube RNA from 76 ± 3 to 123 ± 3 ng/µl and r-MPE by 0.39 ± 0.1% (both P < 0.01). After 3 wk, rat quadriceps r-MPE had increased to 0.25 ± 0.01% (P < 0.01) and was greater with running exercise (0.36 ± 0.02%; P < 0.01). Human muscle r-MPE increased to 0.06 ± 0.01 and 0.13 ± 0.02% at 3/6 wk, respectively, equating to synthesis rates of ~0.8%/day, increasing with resistance exercise to 1.7 ± 0.3%/day (P < 0.01) and 1.2 ± 0.1%/day (P < 0.05) at 3/6 wk, respectively. Therefore, we have developed and physiologically validated a novel technique to explore ribosomal biogenesis in a multimodal fashion.


Subject(s)
Biomarkers/metabolism , Deuterium Oxide , Quadriceps Muscle/metabolism , RNA/biosynthesis , Ribosomes/metabolism , Animals , Cell Line , Female , Humans , Male , Mice , Physical Conditioning, Animal , Rats , Resistance Training , Ribose/metabolism , Tandem Mass Spectrometry , Young Adult
2.
Acta Physiol (Oxf) ; 210(3): 642-54, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24387247

ABSTRACT

AIM: We investigated architectural, functional and molecular responses of human skeletal muscle to concentric (CON) or eccentric (ECC) resistance training (RT). METHODS: Twelve young males performed 10 weeks of concentric (CON) or eccentric (ECC) resistance training (RT) (n = 6 CON, 6 ECC). An additional 14 males were recruited to evaluate acute muscle fascicle behaviour and molecular signalling in biopsies collected from vastus lateralis (VL) after 30 min of single bouts of CON or ECC exercise. VL volume was measured by magnetic resonance imaging. Muscle architecture (fascicle length, Lf; pennation angle, PA) was evaluated by ultrasonography. Muscle remodelling signals to CON or ECC loading [MAPK/AKT-mammalian target of rapamycin (mTOR) signalling] and inflammatory pathway (TNFαMurf-1-MAFbx) were evaluated by immunoblotting. RESULTS: Despite the ~1.2-fold greater load of the ECC group, similar increases in muscle volume (+8% CON and +6% ECC) and in maximal voluntary isometric contraction (+9% CON and +11% ECC) were found after RT. However, increases in Lf were greater after ECC than CON (+12 vs. +5%) while increases in PA were greater in CON than ECC (+30 vs. +5%). Distinct architectural adaptations were associated with preferential growth in the distal regions of VL for ECC (+ECC +8% vs. +CON +2) and mid belly for CON (ECC +7 vs. CON +11%). While MAPK activation (p38MAPK, ERK1/2, p90RSK) was specific to ECC, neither mode affected AKT-mTOR or inflammatory signalling 30 min after exercise. CONCLUSION: Muscle growth with CON and ECC RT occurs with different morphological adaptations reflecting distinct fibre fascicle behaviour and molecular responses.


Subject(s)
Muscle Contraction/physiology , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/metabolism , Resistance Training/methods , Adaptation, Physiological/physiology , Adult , Electromyography , Humans , Immunoblotting , Male , Mitogen-Activated Protein Kinase 3/metabolism , Muscle Strength/physiology , Young Adult , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...