Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Musculoskelet Neuronal Interact ; 24(2): 107-119, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38825993

ABSTRACT

OBJECTIVES: The current study investigated performance fatigability (PF) and time course of changes in force, electromyographic amplitude (EMG AMP) and frequency (EMG MPF), and neuromuscular efficiency (NME) during a sustained, isometric, handgrip hold to failure (HTF) using the rating of perceived exertion (RPE)-Clamp Model. METHODS: Twelve males performed a handgrip HTF anchored to RPE=5. The time to task failure (Tlim), force (N), EMG AMP and MPF, and NME (normalized force/ normalized EMG AMP) were recorded. Analyses included a paired samples t-test for PF at an alpha of p<0.05, 1-way repeated measures ANOVA across time and post-hoc t-tests (p<0.0025) for force, EMG AMP and MPF, and NME responses. RESULTS: The PF (pre- to post- maximal force % decline) was 38.2±11.5%. There were decreases in responses, relative to 0% Tlim, from 40% to 100% Tlim (force), at 30%, 60%, and 100% Tlim (EMG AMP), from 10% to 100% Tlim(EMP MPF), and from 50% to 65%, and 80% to 100% Tlim (NME) (p<0.0025). CONCLUSIONS: The RPE-Clamp Model in this study demonstrated that pacing strategies may be influenced by the integration of anticipatory, feedforward, and feedback mechanisms, and provided insights into the relationship between neuromuscular and perceptual responses, and actual force generating capacity.


Subject(s)
Electromyography , Hand Strength , Muscle Fatigue , Muscle, Skeletal , Humans , Male , Hand Strength/physiology , Muscle Fatigue/physiology , Young Adult , Adult , Electromyography/methods , Muscle, Skeletal/physiology , Isometric Contraction/physiology , Physical Exertion/physiology
2.
Eur J Appl Physiol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772923

ABSTRACT

BACKGROUND: In general, it has been suggested that females are more fatigue-resistant than males, with the magnitude of difference being most pronounced during low-intensity sustained contractions. However, the mechanisms for the apparent sex difference have not yet been fully elucidated in the literature. This study aimed to examine sex-related differences in fatigability and patterns of neuromuscular responses for surface electromyographic (sEMG) and mechanomyographic (sMMG) amplitude and frequency (MPF) characteristics during a sustained submaximal bilateral, isometric leg extension muscle action. METHODS: A sample of 20 young recreationally active males and females with previous resistance training experience performed a sustained, submaximal, bilateral isometric leg extension until task failure. Time-to-task failure was compared using a nonparametric bootstrap of the 95% confidence interval for the mean difference between males and females. Additionally, patterns of response for sEMG and sMMG amplitude and MPF of the dominant limb were examined using linear mixed effect models. RESULTS: There were no differences in time-to-task failure between males and females. Additionally, neuromuscular responses revealed similar patterns of responses between males and females. Interestingly, sEMG amplitude and sMMG amplitude and MPF all revealed non-linear responses, while sEMG MPF demonstrated linear responses. CONCLUSION: These data revealed that time-to-task failure was not different between males and females during sustained submaximal bilateral, isometric leg extension. Interestingly, the parallel, non-linear, increases in sEMG and sMMG amplitude may indicate fatigue induced increases in motor unit recruitment, while the parallel decreases in sMMG MPF may be explained by the intrinsic properties of later recruited motor units, which may have inherently lower firing rates than those recruited earlier.

3.
Med Sci Sports Exerc ; 56(5): 917-926, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38233976

ABSTRACT

PURPOSE: This study quantified the metabolic demands (oxygen uptake (V̇O 2 )), power output adjustments, changes in the V̇O 2 /power output ratio, and perceptual responses (rating of perceived exertion (RPE)) during constant heart rate (HR) exercise performed within the vigorous intensity range (77%-95% HR peak ). METHODS: Twelve women (mean ± SD age, 22 ± 4 yr) performed a graded exercise test to exhaustion to determine peak parameters, and three randomly ordered, constant HR trials to exhaustion or for 60 min at the lower (HR L = 77% HR peak ), middle (HR M = 86% HR peak ), and higher (HR H = 95% HR peak ) end of the vigorous intensity range. Time course of changes and patterns of responses were examined for V̇O 2 , power output, V̇O 2 /power output, and RPE for the composite and for each subject. RESULTS: Across the HR L (time to exhaustion ( Tlim ) = 56.3 ± 9.9 min), HR M (51.8 ± 13.5 min), and HR H (27.2 ± 17.7 min) trials, V̇O 2 and power output decreased quadratically ( P < 0.05) relative to the initial value from 10% to 100% of Tlim , whereas the V̇O 2 /power output increased quadratically from 20% to 100% Tlim , and RPE increased linearly from 50% to 100% Tlim . The V̇O 2 and RPE, collapsed across time, for HR L (54.3% ± 3.3% V̇O 2peak , 11 ± 1.5 RPE) were lower than HR M (64.9% ± 4.5% V̇O 2peak , 14 ± 1.7 RPE), and both were lower than HR H (80.1% ± 4.1% V̇O 2peak , 17 ± 1.4 RPE). None of the 12 subjects at HR L , 6 at HR M , and 7 at HR H were within the vigorous V̇O 2 range. CONCLUSIONS: The HR L was not sufficient to meet the desired metabolic intensity for vigorous exercise, whereas the middle to higher end of the range elicited a V̇O 2 within the prescribed range of only ~50%-60% of the subjects. This study indicated that exercise held constant at a percentage of HR peak cannot consistently be used to prescribe a desired metabolic stimulus.


Subject(s)
Exercise , Oxygen Consumption , Humans , Female , Adolescent , Young Adult , Adult , Heart Rate/physiology , Oxygen Consumption/physiology , Exercise/physiology , Exercise Test , Physical Exertion/physiology
4.
Int J Exerc Sci ; 13(6): 1402-1417, 2020.
Article in English | MEDLINE | ID: mdl-33042381

ABSTRACT

Some evidence indicates that ischemic preconditioning (IPC) may positively affect endurance exercise performance, but IPC's effect on running performance is unclear. This study's purpose was to examine the effect of IPC on running performance in recreational runners. Participants (n=12) completed IPC, a sham (SH) condition, and a leg elevation without blood restriction (LE) control condition on separate days (order randomized). For IPC, blood was restricted using blood pressure cuffs inflated to 220 mmHg at the thigh. For SH, the cuffs were inflated to only 20 mmHg. For LE, participants positioned their legs at 90 degrees against a wall while laying supine. The duration of each protocol was 30 minutes (three 5-minute bouts with 5-minute breaks). Following each protocol, participants ran 2.4 kilometers as fast as possible on a motorized treadmill. Run time, heart rate, and perceived exertion were measured and statistically compared, using repeated-measures ANOVA, each 0.8 kilometers. There were no differences in heart rate or time trial performance across protocols (p>0.05; IPC, 612.5±61.2 sec; SH, 608.1±57.9 sec; LE, 612.7±59.1 sec). Rating of perceived exertion at 0.8 kilometers was significantly lower for the IPC protocol than SH in females only (~5.7%, or ~0.8 points on a 6-20 scale; p<0.05). Our IPC protocol did not improve running performance or physiological parameters during a time trial run in recreational runners. The performance benefit seen in this study's most fit individuals suggests that fitness level may influence IPC's efficacy for improving endurance running performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...