Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Hypertens (Greenwich) ; 23(9): 1767-1775, 2021 09.
Article in English | MEDLINE | ID: mdl-34291559

ABSTRACT

The role of calcium in blood pressure has been widely studied among hypertensive patients; however, no study has explored the role of calcium in hypertensive crises. The primary objective of this study is to evaluate the differences in serum calcium levels between hypertensive crises patients and a 1:1 random matched controls (age-, sex-, race-, diabetes, and body mass index matched). This study is a single-center, retrospective, chart review, case-control study of patients with hypertensive crises (case group) and patients without hypertensive crises (control group). Patients were included in the case group if they were 18 years of age or older with hypertensive crises and have a documented calcium level. The control group patients were required to be 18 years of age or older, have a documented calcium level, and have no diagnosis of hypertensive crises. The primary outcome of the study was to compare the mean serum calcium in patients with hypertensive crises vs patients without hypertensive crises. Five hundred and sixty-six patients were included in the study: 283 patients in both the case group and control group. The primary outcome results showed that serum calcium concentration was not significantly different between the case group (8.99 ± 0.78 mg/dL) and control group (8.96 ± 0.75 mg/dL) (P = .606). This study found no significant difference in serum calcium levels in patients with hypertensive crises compared to a random matched control group. Larger observational or experimental studies may be useful to evaluate the effect of calcium on blood pressure in hypertensive crises.


Subject(s)
Calcium , Hypertension , Adolescent , Adult , Blood Pressure , Case-Control Studies , Humans , Hypertension/drug therapy , Hypertension/epidemiology , Retrospective Studies
2.
Int J Mol Sci ; 18(1)2016 Dec 24.
Article in English | MEDLINE | ID: mdl-28029115

ABSTRACT

The purpose of this study was two-fold: (1) to formulate γ-tocotrienol (GT3) in a nanoemulsion formulation as a prophylactic orally administered radioprotective agent; and (2) to optimize the storage conditions to preserve the structural integrity of both the formulation and the compound. γ-tocotrienol was incorporated into a nanoemulsion and lyophilized with lactose. Ultra performance liquid chromatography-mass spectroscopy (UPLC-MS) was used to monitor the chemical stability of GT3 over time, the particle size and ζ potential, and scanning electron microscopy (SEM) were used to study the physical stability of the nanoemulsion. Radioprotective and toxicity studies were performed in mice. The liquid formulation exhibited GT3 degradation at all storage temperatures. Lyophilization, in the presence of lactose, significantly reduced GT3 degradation. Both the liquid and lyophilized nanoemulsions had stable particle size and ζ potential when stored at 4 °C. Toxicity studies of the nanoemulsion resulted in no observable toxicity in mice at an oral dose of 600 mg/kg GT3. The nano-formulated GT3 (300 mg/kg) demonstrated enhanced survival efficacy compared to GT3 alone (200 and 400 mg/kg) in CD2F1 mice exposed to total body gamma radiation. The optimal long-term storage of formulated GT3 is as a powder at -20 °C to preserve drug and formulation integrity. Formulation of GT3 as a nanoemulsion for oral delivery as a prophylactic radioprotectant shows promise and warrants further investigation.


Subject(s)
Chromans/chemistry , Radiation-Protective Agents/chemistry , Vitamin E/analogs & derivatives , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/prevention & control , Administration, Oral , Animals , Chromans/administration & dosage , Chromans/adverse effects , Chromans/therapeutic use , Drug Stability , Emulsions/chemistry , Lactose/chemistry , Male , Mice , Radiation-Protective Agents/administration & dosage , Radiation-Protective Agents/adverse effects , Radiation-Protective Agents/therapeutic use , Vitamin E/administration & dosage , Vitamin E/adverse effects , Vitamin E/chemistry , Vitamin E/therapeutic use
3.
Eur J Pharm Sci ; 76: 1-9, 2015 Aug 30.
Article in English | MEDLINE | ID: mdl-25933716

ABSTRACT

Fenretinide is an anticancer drug with low water solubility and poor bioavailability. The goal of this study was to develop biodegradable polymeric nanoparticles of fenretinide with the intent of increasing its apparent aqueous solubility and intestinal permeability. Three biodegradable polymers were investigated for this purpose: two different poly lactide-co-glycolide (PLGA) polymers, one acid terminated and one ester terminated, and one poly lactide-co-glycolide/polyethylene glycol (PLGA/PEG) diblock copolymer. Nanoparticles were obtained by using an emulsification solvent evaporation technique. The formulations were characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and particle size analysis. Dissolution studies and Caco-2 cell permeation studies were also carried out for all formulations. Ultra high performance liquid chromatography coupled with mass spectrometry (UPLC/MS) and ultraviolet detection was used for the quantitative determination of fenretinide. Drug loading and the type of polymer affected the nanoparticles' physical properties, drug release rate, and cell permeability. While the acid terminated PLGA nanoparticles performed the best in drug release, the ester terminated PLGA nanoparticles performed the best in the Caco-2 cell permeability assays. The PLGA/PEG copolymer nanoparticles performed better than the formulations with ester terminated PLGA in terms of drug release but had the poorest performance in terms of cell permeation. All three categories of formulations performed better than the drug alone in both drug release and cell permeation studies.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers , Fenretinide/chemistry , Nanoparticles , Polymers/chemistry , Administration, Oral , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/metabolism , Caco-2 Cells , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid , Esters/chemistry , Fenretinide/administration & dosage , Fenretinide/metabolism , Humans , Intestinal Absorption , Intestinal Mucosa/metabolism , Kinetics , Lactic Acid/chemistry , Mass Spectrometry , Microscopy, Electron, Scanning , Particle Size , Permeability , Polyethylene Glycols/chemistry , Polyglactin 910/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Solubility , Spectrophotometry, Ultraviolet , Technology, Pharmaceutical/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...