Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 58(86): 12098-12101, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36222458

ABSTRACT

The switching properties of a cyanido-bridged Fe/Co square molecule were investigated by single-crystal X-ray diffraction and X-ray absorption spectroscopy at both Fe and Co K-edges. Combining these two techniques, a complete picture of the thermal-, light- and X-ray-induced metal-to-metal electron transfer is obtained, illustrating the concerted role played by the Fe and Co sites.

2.
Dalton Trans ; 50(36): 12495-12501, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34240723

ABSTRACT

Heterometallic Anderson wheels of formula [(VIVO)2MII5(hmp)10Cl2](ClO4)2·2MeOH (M = Ni, 1; Co, 2) have been synthesised from the solvothermal reaction of M(ClO4)2·6H2O and VCl3 with hmpH (2-(hydroxymethyl)pyridine). The metallic skeleton describes a centred hexagon, with the two vanadyl ions sitting on opposing sides of the outer ring. Magnetic susceptibility and magnetisation measurements indicate the presence of both ferromagnetic and antiferromagnetic exchange interactions. Theoretical calculations based on density functional methods reproduce both the sign and strength of the exchange interactions found experimentally, and rationalise the parameters extracted.

3.
Chem Sci ; 12(20): 6983-6991, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-34123326

ABSTRACT

Heterolanthanide complexes are difficult to synthesize owing to the similar chemistry of the lanthanide ions. Consequently, very few purely heterolanthanide complexes have been synthesized. This is despite the fact that such complexes hold interesting optical and magnetic properties. To fine-tune these properties, it is important that one can choose complexes with any given combination of lanthanides. Herein we report a synthetic procedure which yields pure heterodinuclear lanthanide cryptates LnLn*LX3 (X = NO3 - or OTf-) based on the cryptand H3L = N[(CH2)2N[double bond, length as m-dash]CH-R-CH[double bond, length as m-dash]N-(CH2)2]3N (R = m-C6H2OH-2-Me-5). In the synthesis the choice of counter ion and solvent proves crucial in controlling the Ln-Ln* composition. Choosing the optimal solvent and counter ion afford pure heterodinuclear complexes with any given combination of Gd(iii)-Lu(iii) including Y(iii). To demonstrate the versatility of the synthesis all dinuclear combinations of Y(iii), Gd(iii), Yb(iii) and Lu(iii) were synthesized resulting in 10 novel complexes of the form LnLn*L(OTf)3 with LnLn* = YbGd 1, YbY 2, YbLu 3, YbYb 4, LuGd 5, LuY 6, LuLu 7, YGd 8, YY 9 and GdGd 10. Through the use of 1H, 13C NMR and mass spectrometry the heterodinuclear nature of YbGd, YbY, YbLu, LuGd, LuY and YGd was confirmed. Crystal structures of LnLn*L(NO3)3 reveal short Ln-Ln distances of ∼3.5 Å. Using SQUID magnetometry the exchange coupling between the lanthanide ions was found to be anti-ferromagnetic for GdGd and YbYb while ferromagnetic for YbGd.

4.
Inorg Chem ; 59(22): 16328-16340, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33124425

ABSTRACT

We report the synthesis, characterization, and magnetic properties of eight neutral functionalized trigonal lanthanide coordination complexes LnL with Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5), Tm (6), Yb (7), Lu (8). These were prepared through a one-pot synthesis where, first, the ligand H3L was synthesized in situ through a Schiff base reaction of tris(2-aminoethyl)amine with 2,6-diformyl-p-cresol. Following addition of Ln(OTf)3·xH2O and base, LnL was obtained. Powder X-ray diffraction confirms that all complexes are isostructural. LnL contain pendant, noncoordinating carbonyl functions that are reactive and represent direct anchoring points to appropriately functionalized surfaces. Furthermore, these reactive carbonyl functions can be used to postfunctionalize LnL: for example, with aromatic π systems. We present herein the Schiff base condensation of 7 with benzylamine to yield 9 as well as the characterization and magnetic properties of 9. Our study establishes LnL as a truly versatile module for the surface deposition of Ln-based single-ion magnets.

5.
Dalton Trans ; 49(39): 13557-13565, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-32955062

ABSTRACT

We report the synthesis, characterisation and magnetic properties of six novel neutral lanthanide cryptate coordination complexes. Reaction of 2,6-diformyl-4-methylphenol, tris(2-aminoethyl)amine and Ln(OTf)3·9H2O in the ratio 3 : 2 : 1, respectively, and in the presence of base affords the isolation of the six complexes LnL·4H2O (Ln = Tb (1), Dy (2), Ho (3), Er (4), Tm (5) and Yb (6)), with H3L being the cryptand N[(CH2)2N[double bond, length as m-dash]CH-R-CH[double bond, length as m-dash]N-(CH2)2]3N (R = m-C6H2OH-2-Me-5). Powder X-ray diffraction confirms that the six complexes are isostructural. The crystal structure of 6 reveals that the Ln(iii) centre is heptacoordinated, in a geometry close to a monocapped distorted octahedron and lies on a pseudo (non-crystallographically imposed) C3 axis. This coordination sphere is similar to the one found in the previously studied Ln(trensal) complexes (H3trensal = 2,2',2''-tris(salicylideneimino)triethylamine). The static and dynamic magnetic properties of these complexes were investigated by SQUID magnetometry. Crystal field parameters were determined for all complexes by modelling of the direct current magnetic susceptibility and variable-temperature-variable-field magnetisation data. As for Ln(trensal), only complexes containing the Kramers ions Dy, Er and Yb displayed out-of-phase susceptibility signals in SQUID measurements in an applied magnetic field. Investigation of the dynamic susceptibility of the Yb complex revealed that the magnetic relaxation is governed by a direct process at low temperatures and a Raman process at higher temperatures, similar to Yb(trensal).

6.
Chem Sci ; 11(31): 8306-8311, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-34123095

ABSTRACT

Magnetochiral dichroism (MΧD) originates in the coupling of local electric fields and magnetic moments in systems where a simultaneous break of space parity and time-reversal symmetries occurs. This magnetoelectric coupling, displayed by chiral magnetic materials, can be exploited to manipulate the magnetic moment of molecular materials at the single molecule level. We demonstrate herein the first experimental observation of X-ray magnetochiral dichroism in enantiopure chiral trigonal single crystals of a chiral mononuclear paramagnetic lanthanide coordination complex, namely, holmium oxydiacetate, at the Ho L3-edge. The observed magnetochiral effect is opposite for the two enantiomers and is rationalised on the basis of a multipolar expansion of the matter-radiation interaction. These results demonstrate that 4f-5d hybridization in chiral lanthanoid coordination complexes is at the origin of magnetochiral dichroism, an effect that could be exploited for addressing of their magnetic moment at the single molecule level.

7.
Chem Sci ; 10(10): 3065-3073, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30996888

ABSTRACT

The synthesis and characterization of a chiral, enneanuclear Mn(iii)-based, Single-Molecule Magnet, [Mn9O4(Me-sao)6(L)3(MeO)3(MeOH)3]Cl (1; Me-saoH2 = methylsalicylaldoxime, HL = lipoic acid) is reported. Compound 1 crystallizes in the orthorhombic P212121 space group and consists of a metallic skeleton describing a defect super-tetrahedron missing one vertex. The chirality of the [MnIII 9] core originates from the directional bridging of the Me-sao2- ligands via the -N-O- oximate moieties, which define a clockwise (1ΔΔ) or counter-clockwise (1ΛΛ) rotation in both the upper [MnIII 3] and lower [MnIII 6] subunits. Structural integrity and retention of chirality upon dissolution and upon deposition on (a) gold nanoparticles, 1@AuNPs, (b) transparent Au(111) surfaces, 1ΛΛ@t-Au(111); 1ΔΔ@t-Au(111), and (c) epitaxial Au(111) on mica surfaces, 1@e-Au(111), was confirmed by CD and IR spectroscopies, mass spectrometry, TEM, XPS, XAS, and AFM. Magnetic susceptibility and magnetization measurements demonstrate the simultaneous retention of SMM behaviour and optical activity, from the solid state, via dissolution, to the surface deposited species.

8.
J Am Chem Soc ; 141(8): 3470-3479, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30501181

ABSTRACT

Molecular complexes based on Prussian Blue analogues have recently attracted considerable interest for their unique bistable properties combined to ultimately reduced dimensions. Here, we investigate the first dinuclear FeCo complex exhibiting both thermal and photomagnetic bistability in the solid state. Through an experimental and theoretical approach combining local techniques-X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD), and ligand field multiplet calculations-we were able to evidence the changes occurring at the atomic scale in the electronic and magnetic properties. The spectroscopic studies were able to fully support at the atomic level the following conclusions: (i) the 300 K phase and the light-induced excited state at 4 K are both built from FeLSIII-CoHSII paramagnetic pairs with no apparent reorganization of the local structure, (ii) the 100 K phase is composed of FeLSII-CoLSIII diamagnetic pairs, and (iii) the light-induced excited state is fully relaxed at an average temperature of ≈50 K. In the paramagnetic phase at 2 K, XAS and XMCD reveal that both Fe and Co ions exhibit a rather large orbital magnetic moment (0.65 µB and 0.46 µB, respectively, under an external magnetic induction of 6.5 T), but it was not possible to detect a magnetic interaction between spin centers above 2 K.

9.
J Am Chem Soc ; 140(31): 9814-9818, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30040890

ABSTRACT

We demonstrate that the [Yb(trensal)] molecule is a prototypical coupled electronic qubit-nuclear qudit system. The combination of noise-resilient nuclear degrees of freedom and large reduction of nutation time induced by electron-nuclear mixing enables coherent manipulation of this qudit by radio frequency pulses. Moreover, the multilevel structure of the qudit is exploited to encode and operate a qubit with embedded basic quantum error correction.

10.
Inorg Chem ; 55(14): 6980-7, 2016 Jul 18.
Article in English | MEDLINE | ID: mdl-27385292

ABSTRACT

Photomagnetism in three-dimensional Co/Fe Prussian blue analogues is a complex phenomenon, whose detailed mechanism is not yet fully understood. Recently, researchers have been able to prepare molecular fragments of these networks using a building block synthetic approach from mononuclear precursors. The main objective in this strategy is to isolate the smallest units that show an intramolecular electron transfer to have a better understanding of the electronic processes. A prior requirement to the development of this kind of system is to understand to what extent electronic and magnetic properties are inherited from the corresponding precursors. In this work, we investigate the electronic and magnetic properties of the FeTp precursor (N(C4H9)4)[TpFe(III)(CN)3], (Tp being tris-pyrazolyl borate) of a recently reported binuclear cyanido-bridged Fe/Co complex. X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements at the Fe L2,3 edges (2p → 3d) supported by ligand field multiplet calculations have allowed to determine the spin and orbit magnetic moments. Inaccuracy of the spin sum rule in the case of low-spin Fe(III) ion was demonstrated. An exceptionally large value of the orbital magnetic moment is found (0.9 µB at T = 2 K and B = 6.5 T) that is likely to play an important role in the magnetic and photomagnetic properties of molecular Fe/Co Prussian blue analogues.

11.
Dalton Trans ; 45(4): 1349-53, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26740231

ABSTRACT

Comproportionation reactions between MnCl2 and KMnO4 in the presence of arsonate or phosphonate ligands promote the cation-assisted assembly of high-nuclearity, wheel-shaped or toroidal {Mn8} () and {Mn24} () complexes; the closely corresponding reaction systems provide insights into the complexation behaviour of homologous phosphonate/arsonate ligand species.

12.
J Am Chem Soc ; 136(38): 13326-32, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-25157642

ABSTRACT

The three-fold symmetric, four-coordinate iron(II) phosphoraminimato complexes PhB(MesIm)3Fe-N═PRR'R″ (PRR'R″ = PMePh2, PMe2Ph, PMe3, and P(n)Pr3) undergo a thermally induced S = 0 to S = 2 spin-crossover in fluid solution. Smaller phosphoraminimato ligands stabilize the low-spin state, and an excellent correlation is observed between the characteristic temperature of the spin-crossover (T1/2) and the Tolman cone angle (θ). Complexes with para-substituted triaryl phosphoraminimato ligands (p-XC6H4)3P═N(-) (X = H, Me and OMe) also undergo spin-crossover in solution. These isosteric phosphoraminimato ligands reveal that the low-spin state is stabilized by more strongly donating ligands. This control over the spin state provides important insights for modulating the magnetic properties of four-coordinate iron(II) complexes.

13.
Chem Commun (Camb) ; 49(16): 1597-9, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23334172

ABSTRACT

Reported here is a face-capped Fe(ii) molecular tetrahedron, [Fe(4)L(4)](BF(4))(8), . Single crystal X-ray diffraction at 153 and 293 K suggest spin crossover (SCO) and variable temperature magnetic susceptibility measurements confirm displays thermally driven SCO behaviour in the solid state and in dilute acetone solution centred around 284-288 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...