Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pract ; 11(4): 878-900, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34842646

ABSTRACT

Sarcomas of the uterine corpus are rare malignant neoplasms, which are further classified into mesenchymal tumors, and mixed (epithelial plus mesenchymal) tumors. The main issues concerning these neoplasms are the small number of clinical trials, insufficient data from evidence-based medicine, insignificant interest from the pharmaceutical industry, all of which close a vicious circle. The low frequency of these malignancies implies insufficient experience in the diagnosis, hence incomplete surgical and complex treatment. Additionally, the rarity of these sarcomas makes it very difficult to develop clinical practice guidelines. Preoperative diagnosis, neoadjuvant and adjuvant chemoradiation, target and hormone therapies still raise many controversies. Disagreements about the role and type of surgical treatment are also often observed in medical literature. There are still insufficient data about the role of pelvic lymph node dissection and fertility-sparing surgery. Pathologists' experience is of paramount importance for an accurate diagnosis. Additionally, genetics examinations become part of diagnosis in some sarcomas of the uterine corpus. Some gene mutations observed in uterine sarcomas are associated with different outcomes. Therefore, a development of molecular classification of uterine sarcomas should be considered in the future. In this review, we focus on the epidemiology, pathogenesis, pathology, diagnosis and treatment of the following sarcomas of the uterine corpus: leiomyosarcoma, low- and high-grade endometrial stromal sarcomas, undifferentiated sarcoma and adenosarcoma. Uterine carcinosarcomas are excluded as they represent an epithelial tumor rather than a true sarcoma.

2.
Front Bioeng Biotechnol ; 9: 637587, 2021.
Article in English | MEDLINE | ID: mdl-34277579

ABSTRACT

The potential biomedical applications of nanodiamond have been considered over the last few decades. However, there is still uncertainty regarding the extent to which the surface characteristics of this material can influence potential applications. The present study investigated the effects of surface characteristics alongside the prospective of improving nanodiamond production using cold plasma and microwave technologies for the surface tailoring of the nanocarbons. Numerous approaches were applied to purify, refine and modify a group of nanosized diamonds at each step of their production cycle: from the detonation soot as the initial raw material to already certified samples. The degree of surface changes were deliberately performed slowly and kept at different non-diamond carbon presence stages, non-carbon elemental content, and amount converted superficial moieties. In total, 21 treatment procedures and 35 types of nanosize diamond products were investigated. In addition cultures of human fibroblast cells showed enhanced viability in the presence of many of the processed nanodiamonds, indicating the potential for dermal applications of these remarkable nanomaterials.

3.
J Clin Med ; 9(5)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414119

ABSTRACT

The term "spaces" refers to the areas delimited by at least two independent fasciae and filled with areolar connective tissue. However, there is discrepancy regarding the spaces and their limits between clinical anatomy and gynecologic surgery, as not every avascular space described in literature is delimited by at least two fasciae. Moreover, new spaces and surgical planes have been developed after the adoption of laparoscopy and nerve-sparing gynecological procedures. Avascular spaces are useful anatomical landmarks in retroperitoneal anatomic and pelvic surgery for both malignant and benign conditions. A noteworthy fact is that for various gynecological diseases, there are different approaches to the avascular spaces of the female pelvis. This is a significant difference, which is best demonstrated by dissection of these spaces for gynecological, urogynecological, and oncogynecological operations. Thorough knowledge regarding pelvic anatomy of these spaces is vital to minimize morbidity and mortality. In this article, we defined nine avascular female pelvic spaces-their boundaries, different approaches, attention during dissection, and applications in obstetrics and gynecology. We described the fourth space and separate the paravesical and pararectal space, as nerve-sparing gynecological procedures request a precise understanding of retroperitoneal spaces.

4.
Protoplasma ; 255(1): 419-423, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28741141

ABSTRACT

Detonation nanodiamonds (DNDs) are carbon-based nanomaterials that are among the most promising nanoparticles available for biomedical applications so far. This is due to their biocompatibility, which could be contributed to their inert core and conformable surface nature. However, DNDs cytotoxicity for urothelial cells and the routes of their internalization remains an open question in the aspect of nanodiamond surface. We therefore analyzed four types of DNDs for cytotoxicity and internalization with normal urothelial cells and two types of cancer urothelial cell lines in vitro. Viability of any of the cell types we used was not compromised with any of four DNDs we evaluated after 24-, 48- and 72-h incubation in three different concentrations of DNDs. Transmission electron microscopy revealed that all four types of DNDs were endocytosed into all three types of urothelial cells tested here. We observed DNDs in endosomes, as well as in multivesicular bodies and multilamellar bodies. These results propose using of DNDs as a delivery system for urological applications in human nanomedicine.


Subject(s)
Microscopy, Electron, Transmission/methods , Nanodiamonds/administration & dosage , Urothelium/metabolism , Humans , Urothelium/cytology
5.
Turk J Biol ; 42(2): 195-203, 2018.
Article in English | MEDLINE | ID: mdl-30814881

ABSTRACT

In the present study we demonstrated that composite PPHMDS/DND coatings with elastic moduli close to those of mature bone tissue (0.2-2.8 GPa) stimulated growth and osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs). Composite coatings were prepared by a method of plasma polymerization (PP) where detonation nanodiamond (DND) particles in different amounts (0.1, 0.5, and 1 mg/mL) were added to hexamethyldisiloxane (HMDS) before plasma deposition. This method allows variation only in the reduced elastic modulus (Er´) with increase in the particle concentration, while the other surface properties, including surface wettability and topography, did not change. The response of hAD-MSCs to the increasing stifness showed an effect on adhesion and osteogenic differentiation but not on cell proliferation. Matrix mineralization and cell spreading were maximized on PPHMDS/DND coatings with the highest elastic modulus (2.826 GPa), while the differences in proliferation rates among the samples were negligible. In general, PPHMDS/DND coatings provide better conditions for growth and osteogenic differentiation of hAD-MSCs in comparison to glass coverslips, confirming their suitability for osteo-integration applications. Additionally, our findings support the hypothesis that biomaterials with elasticity similar to that of the native tissue can improve the differentiation potential of mesenchymal stem cells.

6.
Electrophoresis ; 35(12-13): 1864-72, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24648270

ABSTRACT

A new method for the characterisation of purified detonation nanodiamond (DND) using CZE has been developed. The influence of BGE conditions on electrophoretic mobility, peak shape and particle aggregation was investigated, with resultant observations supported by zeta potential approximations and particle size measurements. Sodium tetraborate (pH 9.3), Tris (pH 9.3) and sodium phosphate (pH 7) were used in studying the BGE concentration effect on a commercial source of chemically stabilised DND. The BGE concentration had a strong effect on the stability of DND in suspension. The formation of aggregates of various sizes was observed as BGE concentration increased. The effect of pH on the electromigration of DND was examined using sodium phosphate (pH 8 and 10). The CZE method was subsequently applied to four different DND samples, which had undergone different routes of purification following detonation synthesis. Each sample produced a unique electrophoretic peak or profile in sodium tetraborate buffer (pH 9.3), such that the actual separation of DND samples from different sources could be achieved.


Subject(s)
Electrophoresis, Capillary/methods , Nanodiamonds/chemistry , Borates/chemistry , Buffers , Hydrogen-Ion Concentration , Particle Size
7.
Biotechnol Biotechnol Equip ; 28(4): 733-739, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-26019557

ABSTRACT

Recently, nanodiamonds (NDs) have attracted great interest due to their unique physical and chemical properties that could be used in various biological applications. However, depending on the origin, NDs often contain different impurities which may affect cellular functions and viability. Therefore, before their biomedical application, the cytotoxicity of newly produced NDs should be assessed. In the present study, we have evaluated cytotoxicity of four types of ND particles with two cell models: a human osteosarcoma cell line, MG-63, and primary rat mesenchymal stem cells (rMSCs). Detonation-generated nanodiamond (DND) particles were purified with different acid oxidizers and impurities' content was determined by elemental analysis. The particles size distribution was measured revealing that the DND particles have an average size in the range of 51-233 nm. Cytotoxicity was assessed by optical microscopy and proliferation assay after 72 hours exposure of the cells to nanoparticles. We observed cell-specific and material-specific toxicity for all tested particles. Primary stem cells demonstrated higher sensitivity to DND particles than osteosarcoma cells. The most toxic were the DND particles with the smallest grain size and slight content of non-diamond carbon, while DNDs with higher grain size and free from impurities had no significant influence on cell proliferation and morphology. In addition, the smaller DND particles were found to form large aggregates mainly during incubation with rMSCs. These results demonstrate the role of the purification method on the properties of DND particles and their cytotoxicity as well as the importance of cell types used for evaluation of the nanomaterials.

8.
J Colloid Interface Sci ; 300(1): 183-9, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16616929

ABSTRACT

Iron oxide modified diamond blends containing different amounts of ultradispersed diamond were prepared and characterized by nitrogen physisorption, X-ray diffraction, temperature programmed reduction, Mössbauer and IR spectroscopy. The catalytic behavior of these composite materials in methanol decomposition to hydrogen, carbon monoxide, and methane has been also studied. The initial state and phase transformations of the supported highly dispersed iron oxide particles in various pretreatment media, as well as their reductive and catalytic properties, strongly depend on the ultradispersed diamond content in the diamond blends.

SELECTION OF CITATIONS
SEARCH DETAIL
...