Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Comput Struct Biotechnol J ; 23: 2548-2564, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38989058

ABSTRACT

P-glycoprotein (P-gp) plays a crucial role in cellular detoxification and drug efflux processes, transitioning between inward-facing (IF) open, occluded, and outward-facing (OF) states to facilitate substrate transport. Its role is critical in cancer therapy, where P-gp contributes to the multidrug resistance phenotype. In our study, classical and enhanced molecular dynamics (MD) simulations were conducted to dissect the structural and functional features of the P-gp conformational states. Our advanced MD simulations, including kinetically excited targeted MD (ketMD) and adiabatic biasing MD (ABMD), provided deeper insights into state transition and translocation mechanisms. Our findings suggest that the unkinking of TM4 and TM10 helices is a prerequisite for correctly achieving the outward conformation. Simulations of the IF-occluded conformations, characterized by kinked TM4 and TM10 helices, consistently demonstrated altered communication between the transmembrane domains (TMDs) and nucleotide binding domain 2 (NBD2), suggesting the implication of this interface in inhibiting P-gp's efflux function. A particular emphasis was placed on the unstructured linker segment connecting the NBD1 to TMD2 and its role in the transporter's dynamics. With the linker present, we specifically noticed a potential entrance of cholesterol (CHOL) through the TM4-TM6 portal, shedding light on crucial residues involved in accommodating CHOL. We therefore suggest that this entry mechanism could be employed for some P-gp substrates or inhibitors. Our results provide critical data for understanding P-gp functioning and developing new P-gp inhibitors for establishing more effective strategies against multidrug resistance.

2.
Trends Pharmacol Sci ; 45(1): 39-55, 2024 01.
Article in English | MEDLINE | ID: mdl-38072723

ABSTRACT

Drug metabolism and transport, orchestrated by drug-metabolizing enzymes (DMEs) and drug transporters (DTs), are implicated in drug-drug interactions (DDIs) and adverse drug reactions (ADRs). Reliable and precise predictions of DDIs and ADRs are critical in the early stages of drug development to reduce the rate of drug candidate failure. A variety of experimental and computational technologies have been developed to predict DDIs and ADRs. Recent artificial intelligence (AI) approaches offer new opportunities for better predicting and understanding the complex processes related to drug metabolism and transport. We summarize the role of major DMEs and DTs, and provide an overview of current progress in computational approaches for the prediction of drug metabolism, transport, and DDIs, with an emphasis on AI including machine learning (ML) and deep learning (DL) modeling.


Subject(s)
Artificial Intelligence , Drug-Related Side Effects and Adverse Reactions , Humans , Machine Learning , Drug Interactions
3.
Immunology ; 171(2): 181-197, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37885279

ABSTRACT

Haemolytic disorders, such as sickle cell disease, are accompanied by the release of high amounts of labile heme into the intravascular compartment resulting in the induction of proinflammatory and prothrombotic complications in affected patients. In addition to the relevance of heme-regulated proteins from the complement and blood coagulation systems, activation of the TLR4 signalling pathway by heme was ascribed a crucial role in the progression of these pathological processes. Heme binding to the TLR4-MD2 complex has been proposed recently, however, essential mechanistic information of the processes at the molecular level, such as heme-binding kinetics, the heme-binding capacity and the respective heme-binding sites (HBMs) is still missing. We report the interaction of TLR4, MD2 and the TLR4-MD2 complex with heme and the consequences thereof by employing biochemical, spectroscopic, bioinformatic and physiologically relevant approaches. Heme binding occurs transiently through interaction with up to four HBMs in TLR4, two HBMs in MD2 and at least four HBMs in their complex. Functional studies highlight that mutations of individual HBMs in TLR4 preserve full receptor activation by heme, suggesting that heme interacts with TLR4 through different binding sites independently of MD2. Furthermore, we confirm and extend the major role of TLR4 for heme-mediated cytokine responses in human immune cells.


Subject(s)
Signal Transduction , Toll-Like Receptor 4 , Humans , Toll-Like Receptor 4/metabolism , Binding Sites , Cytokines/metabolism , Lymphocyte Antigen 96/metabolism , Lipopolysaccharides
4.
Int J Mol Sci ; 24(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38069221

ABSTRACT

Sulfotransferases (SULTs) are phase II metabolizing enzymes catalyzing the sulfoconjugation from the co-factor 3'-Phosphoadenosine 5'-Phosphosulfate (PAPS) to a wide variety of endogenous compounds, drugs and natural products. Although SULT1A1 and SULT1A3 share 93% identity, SULT1A1, the most abundant SULT isoform in humans, exhibits a broad substrate range with specificity for small phenolic compounds, while SULT1A3 displays a high affinity toward monoamine neurotransmitters like dopamine. To elucidate the factors determining the substrate specificity of the SULT1 isoenzymes, we studied the dynamic behavior and structural specificities of SULT1A1 and SULT1A3 by using molecular dynamics (MD) simulations and ensemble docking of common and specific substrates of the two isoforms. Our results demonstrated that while SULT1A1 exhibits a relatively rigid structure by showing lower conformational flexibility except for the lip (loop L1), the loop L2 and the cap (L3) of SULT1A3 are extremely flexible. We identified protein residues strongly involved in the recognition of different substrates for the two isoforms. Our analyses indicated that being more specific and highly flexible, the structure of SULT1A3 has particularities in the binding site, which are crucial for its substrate selectivity.


Subject(s)
Isoenzymes , Sulfotransferases , Humans , Sulfotransferases/metabolism , Substrate Specificity , Binding Sites , Isoenzymes/metabolism , Arylsulfotransferase/metabolism
5.
ChemMedChem ; 18(9): e202300077, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36779293

ABSTRACT

Ruthenium(II) alkyne azide cycloaddition (RuAAC) is an attractive reaction to access 1,5-triazole derivatives and is applicable to internal alkynes. Here, we explore RuAAC to introduce molecular diversity on the diazabicyclooctane (DBO) scaffold of ß-lactamase inhibitors. The methodology presented is fully regioselective and enabled synthesis of a series of 1,5-triazole DBOs and trisubstituted analogues. Molecular modelling and biological evaluation revealed that the DBO substituents provided putative stabilizing interactions in the active site of broad-spectrum ß-lactamase KPC-2 and promising activity against a hyperpermeable strain of Escherichia coli producing KPC-2.


Subject(s)
Ruthenium , beta-Lactamase Inhibitors , beta-Lactamase Inhibitors/chemistry , Ruthenium/pharmacology , Ruthenium/chemistry , Cycloaddition Reaction , Azides , Triazoles/chemistry , Catalysis , Alkynes
6.
iScience ; 25(11): 105290, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36304105

ABSTRACT

UDP-glucuronosyltransferases (UGTs) are responsible for 35% of the phase II drug metabolism. In this study, we focused on UGT1A1, which is a key UGT isoform. Strong inhibition of UGT1A1 may trigger adverse drug/herb-drug interactions, or result in disorders of endobiotic metabolism. Most of the current machine learning methods predicting the inhibition of drug metabolizing enzymes neglect protein structure and dynamics, both being essential for the recognition of various substrates and inhibitors. We performed molecular dynamics simulations on a homology model of the human UGT1A1 structure containing both the cofactor- (UDP-glucuronic acid) and substrate-binding domains to explore UGT conformational changes. Then, we created models for the prediction of UGT1A1 inhibitors by integrating information on UGT1A1 structure and dynamics, interactions with diverse ligands, and machine learning. These models can be helpful for further prediction of drug-drug interactions of drug candidates and safety treatments.

7.
Drug Discov Today ; 27(11): 103349, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36096358

ABSTRACT

Sulfotransferases (SULTs) are Phase II drug-metabolizing enzymes (DMEs) catalyzing the sulfation of a variety of endogenous compounds, natural products, and drugs. Various drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDS) can inhibit SULTs, affecting drug-drug interactions. Several polymorphisms have been identified for SULTs that might be crucial for interindividual variability in drug response and toxicity or for increased disease risk. Here, we review current knowledge on non-synonymous single nucleotide polymorphisms (nsSNPs) of human SULTs, focusing on the coded SULT allozymes and molecular mechanisms explaining their variable activity, which is essential for personalized medicine. We discuss the structural and dynamic bases of key amino acid (AA) variants implicated in the impacts on drug metabolism in the case of SULT1A1, as revealed by molecular modeling approaches.

8.
PLoS Comput Biol ; 18(1): e1009820, 2022 01.
Article in English | MEDLINE | ID: mdl-35081108

ABSTRACT

Cytochrome P450 2C9 (CYP2C9) is a major drug-metabolizing enzyme that represents 20% of the hepatic CYPs and is responsible for the metabolism of 15% of drugs. A general concern in drug discovery is to avoid the inhibition of CYP leading to toxic drug accumulation and adverse drug-drug interactions. However, the prediction of CYP inhibition remains challenging due to its complexity. We developed an original machine learning approach for the prediction of drug-like molecules inhibiting CYP2C9. We created new predictive models by integrating CYP2C9 protein structure and dynamics knowledge, an original selection of physicochemical properties of CYP2C9 inhibitors, and machine learning modeling. We tested the machine learning models on publicly available data and demonstrated that our models successfully predicted CYP2C9 inhibitors with an accuracy, sensitivity and specificity of approximately 80%. We experimentally validated the developed approach and provided the first identification of the drugs vatalanib, piriqualone, ticagrelor and cloperidone as strong inhibitors of CYP2C9 with IC values <18 µM and sertindole, asapiprant, duvelisib and dasatinib as moderate inhibitors with IC50 values between 40 and 85 µM. Vatalanib was identified as the strongest inhibitor with an IC50 value of 0.067 µM. Metabolism assays allowed the characterization of specific metabolites of abemaciclib, cloperidone, vatalanib and tarafenacin produced by CYP2C9. The obtained results demonstrate that such a strategy could improve the prediction of drug-drug interactions in clinical practice and could be utilized to prioritize drug candidates in drug discovery pipelines.


Subject(s)
Computational Biology/methods , Cytochrome P-450 CYP2C9 , Cytochrome P-450 Enzyme Inhibitors , Machine Learning , Cytochrome P-450 CYP2C9/chemistry , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 Enzyme Inhibitors/analysis , Cytochrome P-450 Enzyme Inhibitors/chemistry , Cytochrome P-450 Enzyme Inhibitors/metabolism , Drug Interactions , Humans
9.
Molecules ; 26(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34770768

ABSTRACT

The aim of this study was to investigate the chemical space and interactions of natural compounds with sulfotransferases (SULTs) using ligand- and structure-based in silico methods. An in-house library of natural ligands (hormones, neurotransmitters, plant-derived compounds and their metabolites) reported to interact with SULTs was created. Their chemical structures and properties were compared to those of compounds of non-natural (synthetic) origin, known to interact with SULTs. The natural ligands interacting with SULTs were further compared to other natural products for which interactions with SULTs were not known. Various descriptors of the molecular structures were calculated and analyzed. Statistical methods (ANOVA, PCA, and clustering) were used to explore the chemical space of the studied compounds. Similarity search between the compounds in the different groups was performed with the ROCS software. The interactions with SULTs were additionally analyzed by docking into different experimental and modeled conformations of SULT1A1. Natural products with potentially strong interactions with SULTs were outlined. Our results contribute to a better understanding of chemical space and interactions of natural compounds with SULT enzymes and help to outline new potential ligands of these enzymes.


Subject(s)
Biological Products/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Sulfotransferases/chemistry , Biological Products/pharmacology , Cluster Analysis , Flavonoids , Ligands , Molecular Structure , Polyphenols , Structure-Activity Relationship , Sulfotransferases/metabolism
10.
Sci Rep ; 11(1): 13129, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162941

ABSTRACT

Sulfotransferases (SULTs) are phase II drug-metabolizing enzymes catalyzing the sulfoconjugation from the co-factor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to a substrate. It has been previously suggested that a considerable shift of SULT structure caused by PAPS binding could control the capability of SULT to bind large substrates. We employed molecular dynamics (MD) simulations and the recently developed approach of MD with excited normal modes (MDeNM) to elucidate molecular mechanisms guiding the recognition of diverse substrates and inhibitors by SULT1A1. MDeNM allowed exploring an extended conformational space of PAPS-bound SULT1A1, which has not been achieved up to now by using classical MD. The generated ensembles combined with docking of 132 SULT1A1 ligands shed new light on substrate and inhibitor binding mechanisms. Unexpectedly, our simulations and analyses on binding of the substrates estradiol and fulvestrant demonstrated that large conformational changes of the PAPS-bound SULT1A1 could occur independently of the co-factor movements that could be sufficient to accommodate large substrates as fulvestrant. Such structural displacements detected by the MDeNM simulations in the presence of the co-factor suggest that a wider range of drugs could be recognized by PAPS-bound SULT1A1 and highlight the utility of including MDeNM in protein-ligand interactions studies where major rearrangements are expected.


Subject(s)
Arylsulfotransferase/chemistry , Molecular Dynamics Simulation , Binding Sites , Humans , Phosphoadenosine Phosphosulfate/metabolism , Protein Binding , Substrate Specificity
11.
Sci Rep ; 11(1): 3198, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542326

ABSTRACT

Scoring functions are essential for modern in silico drug discovery. However, the accurate prediction of binding affinity by scoring functions remains a challenging task. The performance of scoring functions is very heterogeneous across different target classes. Scoring functions based on precise physics-based descriptors better representing protein-ligand recognition process are strongly needed. We developed a set of new empirical scoring functions, named DockTScore, by explicitly accounting for physics-based terms combined with machine learning. Target-specific scoring functions were developed for two important drug targets, proteases and protein-protein interactions, representing an original class of molecules for drug discovery. Multiple linear regression (MLR), support vector machine and random forest algorithms were employed to derive general and target-specific scoring functions involving optimized MMFF94S force-field terms, solvation and lipophilic interactions terms, and an improved term accounting for ligand torsional entropy contribution to ligand binding. DockTScore scoring functions demonstrated to be competitive with the current best-evaluated scoring functions in terms of binding energy prediction and ranking on four DUD-E datasets and will be useful for in silico drug design for diverse proteins as well as for specific targets such as proteases and protein-protein interactions. Currently, the MLR DockTScore is available at www.dockthor.lncc.br .


Subject(s)
Drug Discovery/methods , Drugs, Investigational/metabolism , Protease Inhibitors/metabolism , Research Design/statistics & numerical data , Software , Support Vector Machine , Datasets as Topic , Drugs, Investigational/chemistry , Drugs, Investigational/pharmacology , Entropy , Humans , Hydrophobic and Hydrophilic Interactions , Internet , Ligands , Molecular Docking Simulation , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Interaction Mapping
12.
ACS Chem Biol ; 15(6): 1566-1574, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32320205

ABSTRACT

Protein-protein interactions (PPIs) mediate nearly every cellular process and represent attractive targets for modulating disease states but are challenging to target with small molecules. Despite this, several PPI inhibitors (iPPIs) have entered clinical trials, and a growing number of PPIs have become validated drug targets. However, high-throughput screening efforts still endure low hit rates mainly because of the use of unsuitable screening libraries. Here, we describe the collective effort of a French consortium to build, select, and store in plates a unique chemical library dedicated to the inhibition of PPIs. Using two independent predictive models and two updated databases of experimentally confirmed PPI inhibitors developed by members of the consortium, we built models based on different training sets, molecular descriptors, and machine learning methods. Independent statistical models were used to select putative PPI inhibitors from large commercial compound collections showing great complementarity. Medicinal chemistry filters were applied to remove undesirable structures from this set (such as PAINS, frequent hitters, and toxic compounds) and to improve drug likeness. The remaining compounds were subjected to a clustering procedure to reduce the final size of the library while maintaining its chemical diversity. In practice, the library showed a 46-fold activity rate enhancement when compared to a non-iPPI-enriched diversity library in high-throughput screening against the CD47-SIRPα PPI. The Fr-PPIChem library is plated in 384-well plates and will be distributed on demand to the scientific community as a powerful tool for discovering new chemical probes and early hits for the development of potential therapeutic drugs.


Subject(s)
Databases, Chemical , High-Throughput Screening Assays/methods , Protein Interaction Maps , Small Molecule Libraries/chemistry , Drug Discovery , Models, Chemical , Reproducibility of Results
13.
Mol Genet Genomic Med ; 8(4): e1166, 2020 04.
Article in English | MEDLINE | ID: mdl-32096919

ABSTRACT

BACKGROUND: Different types of in silico approaches can be used to predict the phenotypic consequence of missense variants. Such algorithms are often categorized as sequence based or structure based, when they necessitate 3D structural information. In addition, many other in silico tools, not dedicated to the analysis of variants, can be used to gain additional insights about the possible mechanisms at play. METHODS: Here we applied different computational approaches to a set of 20 known missense variants present on different proteins (CYP, complement factor B, antithrombin and blood coagulation factor VIII). The tools that were used include fast computational approaches and web servers such as PolyPhen-2, PopMusic, DUET, MaestroWeb, SAAFEC, Missense3D, VarSite, FlexPred, PredyFlexy, Clustal Omega, meta-PPISP, FTMap, ClusPro, pyDock, PPM, RING, Cytoscape, and ChannelsDB. RESULTS: We observe some conflicting results among the methods but, most of the time, the combination of several engines helped to clarify the potential impacts of the amino acid substitutions. CONCLUSION: Combining different computational approaches including some that were not developed to investigate missense variants help to predict the possible impact of the amino acid substitutions. Yet, when the modified residues are involved in a salt-bridge, the tools tend to fail, even when the analysis is performed in 3D. Thus, interactive structural analysis with molecular graphics packages such as Chimera or PyMol or others are still needed to clarify automatic prediction.


Subject(s)
Molecular Dynamics Simulation/standards , Mutation, Missense , Sequence Analysis, Protein/methods , Software/standards , Blood Coagulation Factors/chemistry , Blood Coagulation Factors/genetics , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Humans , Sequence Analysis, Protein/standards
14.
J Am Soc Nephrol ; 31(4): 829-840, 2020 04.
Article in English | MEDLINE | ID: mdl-32034108

ABSTRACT

BACKGROUND: The pathophysiology of the leading cause of pediatric acute nephritis, acute postinfectious GN, including mechanisms of the pathognomonic transient complement activation, remains uncertain. It shares clinicopathologic features with C3 glomerulopathy, a complement-mediated glomerulopathy that, unlike acute postinfectious GN, has a poor prognosis. METHODS: This retrospective study investigated mechanisms of complement activation in 34 children with acute postinfectious GN and low C3 level at onset. We screened a panel of anticomplement protein autoantibodies, carried out related functional characterization, and compared results with those of 60 children from the National French Registry who had C3 glomerulopathy and persistent hypocomplementemia. RESULTS: All children with acute postinfectious GN had activation of the alternative pathway of the complement system. At onset, autoantibodies targeting factor B (a component of the alternative pathway C3 convertase) were found in a significantly higher proportion of children with the disorder versus children with hypocomplementemic C3 glomerulopathy (31 of 34 [91%] versus 4 of 28 [14%], respectively). In acute postinfectious GN, anti-factor B autoantibodies were transient and correlated with plasma C3 and soluble C5b-9 levels. We demonstrated that anti-factor B antibodies enhance alternative pathway convertase activity in vitro, confirming their pathogenic effect. We also identified crucial antibody binding sites on factor B, including one correlated to disease severity. CONCLUSIONS: These findings elucidate the pathophysiologic mechanisms underlying acute postinfectious GN by identifying anti-factor B autoantibodies as contributing factors in alternative complement pathway activation. At onset of a nephritic syndrome with low C3 level, screening for anti-factor B antibodies might help guide indications for kidney biopsy to avoid misdiagnosed chronic glomerulopathy, such as C3 glomerulopathy, and to help determine therapy.


Subject(s)
Autoantibodies/blood , Complement Activation/physiology , Complement C3/metabolism , Complement Factor B/immunology , Glomerulonephritis/blood , Glomerulonephritis/diagnosis , Child , Child, Preschool , Complement C3 Nephritic Factor/metabolism , Female , France , Humans , Male , Retrospective Studies
15.
Int J Mol Sci ; 20(18)2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31546814

ABSTRACT

Chemical biology and drug discovery are complex and costly processes. In silico screening approaches play a key role in the identification and optimization of original bioactive molecules and increase the performance of modern chemical biology and drug discovery endeavors. Here, we describe a free web-based protocol dedicated to small-molecule virtual screening that includes three major steps: ADME-Tox filtering (via the web service FAF-Drugs4), docking-based virtual screening (via the web service MTiOpenScreen), and molecular mechanics optimization (via the web service AMMOS2 [Automatic Molecular Mechanics Optimization for in silico Screening]). The online tools FAF-Drugs4, MTiOpenScreen, and AMMOS2 are implemented in the freely accessible RPBS (Ressource Parisienne en Bioinformatique Structurale) platform. The proposed protocol allows users to screen thousands of small molecules and to download the top 1500 docked molecules that can be further processed online. Users can then decide to purchase a small list of compounds for in vitro validation. To demonstrate the potential of this online-based protocol, we performed virtual screening experiments of 4574 approved drugs against three cancer targets. The results were analyzed in the light of published drugs that have already been repositioned on these targets. We show that our protocol is able to identify active drugs within the top-ranked compounds. The web-based protocol is user-friendly and can successfully guide the identification of new promising molecules for chemical biology and drug discovery purposes.


Subject(s)
Databases, Chemical , Internet , Molecular Docking Simulation , Software , Animals , Humans
16.
Sci Rep ; 9(1): 10675, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31337835

ABSTRACT

Numerous mutations in the Plasmodium falciparum Kelch13 (K13) protein confer resistance to artemisinin derivatives, the current front-line antimalarial drugs. K13 is an essential protein that contains BTB and Kelch-repeat propeller (KREP) domains usually found in E3 ubiquitin ligase complexes that target substrate protein(s) for ubiquitin-dependent degradation. K13 is thought to bind substrate proteins, but its functional/interaction sites and the structural alterations associated with artemisinin resistance mutations remain unknown. Here, we screened for the most evolutionarily conserved sites in the protein structure of K13 as indicators of structural and/or functional constraints. We inferred structure-dependent substitution rates at each amino acid site of the highly conserved K13 protein during the evolution of Apicomplexa parasites. We found two solvent-exposed patches of extraordinarily conserved sites likely involved in protein-protein interactions, one in BTB and the other one in KREP. The conserved patch in K13 KREP overlaps with a shallow pocket that displays a differential electrostatic surface potential, relative to neighboring sites, and that is rich in serine and arginine residues. Comparative structural and evolutionary analyses revealed that these properties were also found in the functionally-validated shallow pocket of other KREPs including that of the cancer-related KEAP1 protein. Finally, molecular dynamics simulations carried out on PfK13 R539T and C580Y artemisinin resistance mutant structures revealed some local structural destabilization of KREP but not in its shallow pocket. These findings open new avenues of research on one of the most enigmatic malaria proteins with the utmost clinical importance.


Subject(s)
Artemisinins/pharmacology , Drug Resistance/genetics , Malaria, Falciparum/parasitology , Protozoan Proteins/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Evolution, Molecular , Malaria, Falciparum/drug therapy , Molecular Dynamics Simulation , Plasmodium falciparum , Protozoan Proteins/genetics
17.
Drug Discov Today ; 24(2): 551-559, 2019 02.
Article in English | MEDLINE | ID: mdl-30472428

ABSTRACT

Molecular descriptors have been used to characterize and predict the functions of small molecules, including inhibitors of protein-protein interactions (iPPIs). Such molecules are valuable to investigate disease pathways and as starting points for drug discovery endeavors. iPPIs tend to bind at the surface of macromolecules and the design of such compounds remains challenging. Here, we report on our investigation of a pool of interpretable molecular descriptors for solvent-exposed and buried co-crystallized ligands. Several descriptors were found to be significantly different between the two classes and were further exploited using machine-learning approaches. This work could open new perspectives for the rational design of focused libraries enriched in new types of small drug-like molecules that could be used to prevent PPIs.


Subject(s)
Drug Design , Proteins/metabolism , Crystallization , Humans , Ligands , Solvents
18.
Oncotarget ; 9(64): 32346-32361, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30190791

ABSTRACT

Drug discovery is a long and difficult process that benefits from the integration of virtual screening methods in experimental screening campaigns such as to generate testable hypotheses, accelerate and/or reduce the cost of drug development. Current drug attrition rate is still a major issue in all therapeutic areas and especially in the field of cancer. Drug repositioning as well as the screening of natural compounds constitute promising approaches to accelerate and improve the success rate of drug discovery. We developed three compounds libraries of purchasable compounds: Drugs-lib, FOOD-lib and NP-lib that contain approved drugs, food constituents and natural products, respectively, that are optimized for structure-based virtual screening studies. The three compounds libraries are implemented in the MTiOpenScreen web server that allows users to perform structure-based virtual screening computations on their selected protein targets. The server outputs a list of 1,500 molecules with predicted binding scores that can then be processed further by the users and purchased for experimental validation. To illustrate the potential of our service for drug repositioning endeavours, we selected five recently published drugs that have been repositioned in vitro and/or in vivo on cancer targets. For each drug, we used the MTiOpenScreen service to screen the Drugs-lib collection against the corresponding anti-cancer target and we show that our protocol is able to rank these drugs within the top ranked compounds. This web server should assist the discovery of promising molecules that could benefit patients, with faster development times, and reduced costs and risk.

19.
PLoS One ; 13(5): e0197249, 2018.
Article in English | MEDLINE | ID: mdl-29746595

ABSTRACT

Cytochrome P450 2C9 (CYP2C9) metabolizes about 15% of clinically administrated drugs. The allelic variant CYP2C9*30 (A477T) is associated to diminished response to the antihypertensive effects of the prodrug losartan and affected metabolism of other drugs. Here, we investigated molecular mechanisms involved in the functional consequences of this amino-acid substitution. Molecular dynamics (MD) simulations performed for the active species of the enzyme (heme in the Compound I state), in the apo or substrate-bound state, and binding energy analyses gave insights into altered protein structure and dynamics involved in the defective drug metabolism of human CYP2C9.30. Our data revealed an increased rigidity of the key Substrate Recognition Sites SRS1 and SRS5 and shifting of the ß turn 4 of SRS6 toward the helix F in CYP2C9.30. Channel and binding substrate dynamics analyses showed altered substrate channel access and active site accommodation. These conformational and dynamic changes are believed to be involved in the governing mechanism of the reduced catalytic activity. An ensemble of representative conformations of the WT and A477T mutant properly accommodating drug substrates were identified, those structures can be used for prediction of new CYP2C9 and CYP2C9.30 substrates and drug-drug interactions.


Subject(s)
Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 CYP2C9/metabolism , Pharmacogenomic Variants , Catalysis , Humans , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/metabolism , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation
20.
Bioinformatics ; 33(22): 3658-3660, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28961788

ABSTRACT

MOTIVATION: Identification of small molecules that could be interesting starting points for drug discovery or to investigate a biological system as in chemical biology endeavours is both time consuming and costly. In silico approaches that assist the design of quality compound collections or help to prioritize molecules before synthesis or purchase are therefore valuable. Here quality refers to the selection of molecules that pass one or several selected filters that can be tuned by the users according to the project and the stage of the project. These filters can involve prediction of physicochemical properties, search for toxicophores or other unwanted chemical groups. RESULTS: FAF-Drugs4 is a novel version of our online server dedicated to the preparation and annotation of compound collections. The tool is now faster and several parameters have been optimized. In addition, a new service referred to as FAF-QED, an implementation of the quantitative estimate of drug-likeness method, is now available. AVAILABILITY AND IMPLEMENTATION: The server is available at http://fafdrugs4.mti.univ-paris-diderot.fr. CONTACT: Bruno.Villoutreix@inserm.fr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Computer Simulation , Drug Discovery/methods , Software , Computational Biology/instrumentation , Drug Discovery/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...