Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 126(30): 4902-4914, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35861575

ABSTRACT

We report on an original full ab initio quantum molecular approach designed to simulate Cu 2p X-ray photoelectron spectra. The description includes electronic relaxation/correlation and spin-orbit coupling effects and is implemented within nonorthogonal sets of molecular orbitals for the initial and final states. The underlying mechanism structuring the Cu 2p photoelectron spectra is clarified thanks to a correlation diagram applied to the CuO4C6H6 paradigm. This diagram illustrates how the energy drop of the Cu 3d levels following the creation of the Cu 2p core hole switches the nature of the highest singly occupied molecular orbital (H-SOMO) from dominant metal to dominant ligand character. It also reveals how the repositioning of the Cu 3d levels induces the formation of new bonding and antibonding orbitals from which shakeup mechanisms toward the relaxed H-SOMO operate. The specific nature, ligand → ligand and metal → ligand, of these excitations building the satellite lines is exposed. Our approach finally applied to the real Cu(acac)2 system clearly demonstrates how a definite interpretation of the XPS spectra can be obtained when a correct evaluation of binding energies, intensities, and relative widths of the spectral lines is achieved.

2.
Chem Sci ; 13(6): 1789-1800, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35282626

ABSTRACT

We investigate interatomic Coulombic decay in NeKr dimers after neon inner-valence photoionization [Ne+(2s-1)] using a synchrotron light source. We measure with high energy resolution the two singly charged ions of the Coulomb-exploding dimer dication and the photoelectron in coincidence. By carefully tracing the post-collision interaction between the photoelectron and the emitted ICD electron we are able to probe the temporal evolution of the state as it decays. Although the ionizing light pulses are 80 picoseconds long, we determine the lifetime of the intermediate dimer cation state and visualize the contraction of the nuclear structure on the femtosecond time scale.

3.
Phys Chem Chem Phys ; 18(25): 16671-81, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27273063

ABSTRACT

Core excited states in clusters or bulk medium are known to undergo a process of internal ionisation, whereby the excited electron delocalises throughout the medium. This delocalisation is visible in the shifting and broadening of lines in X-ray absorption spectra, and it impacts the electronic decay initiated by photoabsorption. In this paper we study the delocalisation of electrons excited from the 1s core orbital of Na(+) and Mg(2+) ions in microsolvated Na(+)(H2O)m and Mg(2+)(H2O)m clusters (m = 1-6) by computing the X-ray absorption spectra and electron distributions in different core excited states. We show that addition of water ligands to the ion leads to more and more pronounced delocalisation of the core-to-valence 1s → 3p and core-to-Rydberg 1s → 4p excitations. Even for the compact 1s → 3p excitation the excited electron is mostly located on the water molecules when the solvation shell is complete. We also found that the degree of delocalisation strongly depends on the cluster geometry and the ionic charge. These results indicate that even in small microsolvated clusters delocalisation of core excited electrons is substantial and will affect the following electronic decay. The accuracy and transferability of our results are corroborated by the good agreement between our XAS spectra of microsolvated Na(+) and experimental X-ray absorption spectra of dilute NaCl solutions.

4.
J Chem Phys ; 141(16): 164303, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25362295

ABSTRACT

The resonant-Auger - interatomic Coulombic decay (ICD) cascade was recently suggested as an efficient means of controlling the course of the ICD process. Recent theoretical and experimental works show that control over the energies of the emitted ICD electrons can be achieved either by varying the photon energy to produce different initial core excitations or by changing the neighboring species. This work presents a theoretical investigation on the role of the rare-gas neighbor and clarifies how the latter influences the ICD process. For this purpose, we compare fully ab initio computed ICD-electron and kinetic energy release spectra following the 2p(3/2) → 4s, 2p(1/2) → 4s and 2p(3/2) → 3d of Ar in ArKr and Ar2. We demonstrate that the presence of the chemically "softer" partner atom results in an increase in the energies of the emitted ICD electrons, and also in the appearance of additional ICD-active states. The latter leads to a threefold increase in the ICD yield for the case of the 2p(3/2, 1/2) → 4s parent core excitations.

5.
J Chem Phys ; 141(6): 064307, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25134571

ABSTRACT

A scheme utilizing excitation of core electrons followed by the resonant-Auger - interatomic Coulombic decay (RA-ICD) cascade was recently proposed as a means of controlling the generation site and energies of slow ICD electrons. This control mechanism was verified in a series of experiments in rare gas dimers. In this article, we present fully ab initio computed ICD electron and kinetic energy release spectra produced following 2p(3/2) → 4s, 2p(1/2) → 4s, and 2p(3/2) → 3d core excitations of Ar in Ar2. We demonstrate that the manifold of ICD states populated in the resonant Auger process comprises two groups. One consists of lower energy ionization satellites characterized by fast interatomic decay, while the other consists of slow decaying higher energy ionization satellites. We show that accurate description of nuclear dynamics in the latter ICD states is crucial for obtaining theoretical electron and kinetic energy release spectra in good agreement with the experiment.

6.
Phys Rev Lett ; 97(14): 143903, 2006 Oct 06.
Article in English | MEDLINE | ID: mdl-17155253

ABSTRACT

We demonstrate up-conversion of noncoherent sunlight realized by ultralow excitation intensity. The bimolecular up-conversion process in our systems relies on the presence of a metastable triplet excited state, and thus has dramatically different photophysical characteristics relative to the other known methods for photon up-conversion (two-photon absorption, parametric processes, second harmonic generation, sequential multiphoton absorption, etc.).

7.
Plant Physiol ; 98(2): 700-7, 1992 Feb.
Article in English | MEDLINE | ID: mdl-16668698

ABSTRACT

Soluble and thylakoid membrane proteins of jasmonic acid (JA)-treated and salt-stressed barley (Hordeum vulgare L.) seedlings were investigated using 15% sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. High JA concentrations induced marked quantitative and qualitative changes in polypeptide profiles concerning mainly the proteins with approximately equal mobility, as in NaCl-stressed plants. The most obvious increase in thylakoid polypeptide band intensity was at 55 to 57 kilodaltons (kD). The relative share of some polypeptides with apparent molecular masses above 66 kD and of polypeptides with lower molecular masses in the region of 20.5 to 15 kD was enhanced. At the same time, one new band at 31 to 31.5 kD was well expressed at 25 and 250 micromolar JA concentrations and became discernible in the 100 micromolar NaCl-treated plants. The intensity of some polypeptides of soluble proteins (molecular masses of 60, 47, 37, 30, and 23.4 kD) increased with increasing JA concentration, whereas the intensities of other polypeptide bands (55, 21.4, and 15 kD) decreased. Enhanced levels of 60-, 47-, 34-, and 30-kD polypeptides and reduced levels of 55- and 15-kD polypeptides were present in NaCl-treated plants. The appearance of one new polypeptide, of 25.1 kD, was observed only in NaCl-treated plants. At 100 millimolar NaCl, an eightfold increase in proline content was observed while at 250 micromolar JA, the proline content was threefold over the control. It is hypothesized that exogenously applied jasmonates act as stress agents. As such, they provoke alterations in the proline content and they can modulate typical stress responses by induction of stress proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...