Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Front Psychiatry ; 10: 317, 2019.
Article in English | MEDLINE | ID: mdl-31133897

ABSTRACT

Cue-induced craving is a significant barrier to obtaining abstinence from cocaine. Neuroimaging research has shown that cocaine cue exposure evokes elevated activity in a network of frontal-striatal brain regions involved in drug craving and drug seeking. Prior research from our laboratory has demonstrated that when targeted at the medial prefrontal cortex (mPFC), continuous theta burst stimulation (cTBS), an inhibitory form of non-invasive brain stimulation, can decrease drug cue-related activity in the striatum in cocaine users and alcohol users. However, it is known that there are individual differences in response to repetitive transcranial magnetic stimulation (rTMS), with some individuals being responders and others non-responders. There is some evidence that state-dependent effects influence response to rTMS, with baseline neural state predicting rTMS treatment outcomes. In this single-blind, active sham-controlled crossover study, we assess the striatum as a biomarker of treatment response by determining if baseline drug cue reactivity in the striatum influences striatal response to mPFC cTBS. The brain response to cocaine cues was measured in 19 cocaine-dependent individuals immediately before and after real and sham cTBS (110% resting motor threshold, 3600 total pulses). Group independent component analysis (ICA) revealed a prominent striatum network comprised of bilateral caudate, putamen, and nucleus accumbens, which was modulated by the cocaine cue reactivity task. Baseline drug cue reactivity in this striatal network was inversely related to change in striatum reactivity after real (vs. sham) cTBS treatment (ρ = -.79; p < .001; R 2 Adj = .58). Specifically, individuals with a high striatal response to cocaine cues at baseline had significantly attenuated striatal activity after real but not sham cTBS (t 9 = -3.76; p ≤ .005). These data demonstrate that the effects of mPFC cTBS on the neural circuitry of craving are not uniform and may depend on an individual's baseline frontal-striatal reactivity to cues. This underscores the importance of assessing individual variability as we develop brain stimulation treatments for addiction.

4.
Brain Stimul ; 11(4): 699-708, 2018.
Article in English | MEDLINE | ID: mdl-29716843

ABSTRACT

BACKGROUND: Optimal parameters of transcutaneous auricular vagus nerve stimulation (taVNS) are still undetermined. Given the vagus nerve's role in regulating heart rate (HR), it is important to determine safety and HR effects of various taVNS parameters. OBJECTIVE: We conducted two sequential trials to systematically test the effects of various taVNS parameters on HR. METHODS: 15 healthy individuals participated in the initial two-visit, crossover exploratory trial, receiving either tragus (active) or earlobe (control) stimulation each visit. Nine stimulation blocks of varying parameters (pulse width: 100 µs, 200 µs, 500 µs; frequency: 1 Hz, 10 Hz, 25 Hz) were administered each visit. HR was recorded and analyzed for stimulation-induced changes. Using similar methods and the two best parameters from trial 1 (500µs 10 Hz and 500µs 25 Hz), 20 healthy individuals then participated in a follow-up confirmatory study. RESULTS: Trial 1- There was no overall effect of the nine conditions on HR during stimulation. However multivariate analysis revealed two parameters that significantly decreased HR during active stimulation compared to control (500µs 10 Hz and 500µs 25 Hz; p < 0.01). Additionally, active taVNS significantly attenuated overall sympathetic HR rebound (post-stimulation) compared to control (p < 0.001). Trial 2-For these two conditions, active taVNS significantly decreased HR compared to control (p = 0.02), with the strongest effects at 500µs 10 Hz (p = 0.032). CONCLUSION: These studies suggest that 60s blocks of tragus stimulation are safe, and some specific parameters modulate HR. Of the nine parameters studied, 500µs 10 Hz induced the greatest HR effects.


Subject(s)
Heart Rate , Transcutaneous Electric Nerve Stimulation/adverse effects , Vagus Nerve Stimulation/adverse effects , Adult , Humans , Male , Transcutaneous Electric Nerve Stimulation/methods , Vagus Nerve/physiology , Vagus Nerve Stimulation/methods
5.
Article in English | MEDLINE | ID: mdl-29776789

ABSTRACT

BACKGROUND: Elevated frontal and striatal reactivity to drug cues is a transdiagnostic hallmark of substance use disorders. The goal of these experiments was to determine if it is possible to decrease frontal and striatal reactivity to drug cues in both cocaine users and heavy alcohol users through continuous theta burst stimulation (cTBS) to the left ventromedial prefrontal cortex (VMPFC). METHODS: Two single-blinded, within-subject, active sham-controlled experiments were performed wherein neural reactivity to drug/alcohol cues versus neutral cues was evaluated immediately before and after receiving real or sham cTBS (110% resting motor threshold, 3600 pulses, Fp1 location; N = 49: 25 cocaine users [experiment 1], 24 alcohol users [experiment 2]; 196 total functional magnetic resonance imaging scans). Generalized psychophysiological interaction and three-way repeated-measures analysis of variance were used to evaluate cTBS-induced changes in drug cue-associated functional connectivity between the left VMPFC and eight regions of interest: ventral striatum, left and right caudate, left and right putamen, left and right insula, and anterior cingulate cortex. RESULTS: In both experiments, there was a significant interaction between treatment (real/sham) and time (pre/post). In both experiments, cue-related functional connectivity was significantly attenuated following real cTBS versus sham cTBS. There was no significant interaction with region of interest for either experiment. CONCLUSIONS: This is the first sham-controlled investigation to demonstrate, in two populations, that VMPFC cTBS can attenuate neural reactivity to drug and alcohol cues in frontostriatal circuits. These results provide an empirical foundation for future clinical trials that may evaluate the efficacy, durability, and clinical implications of VMPFC cTBS to treat addictions.


Subject(s)
Alcoholism/physiopathology , Cocaine-Related Disorders/physiopathology , Connectome/methods , Corpus Striatum/physiopathology , Cues , Gyrus Cinguli/physiopathology , Prefrontal Cortex/physiopathology , Transcranial Magnetic Stimulation/methods , Adult , Alcoholism/diagnostic imaging , Cocaine-Related Disorders/diagnostic imaging , Corpus Striatum/diagnostic imaging , Female , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Placebos , Prefrontal Cortex/diagnostic imaging , Single-Blind Method , Young Adult
6.
Brain Stimul ; 11(3): 492-500, 2018.
Article in English | MEDLINE | ID: mdl-29361441

ABSTRACT

BACKGROUND: Electrical stimulation of the auricular branch of the vagus nerve (ABVN) via transcutaneous auricular vagus nerve stimulation (taVNS) may influence afferent vagal networks. There have been 5 prior taVNS/fMRI studies, with inconsistent findings due to variability in stimulation targets and parameters. OBJECTIVE: We developed a taVNS/fMRI system to enable concurrent electrical stimulation and fMRI acquisition to compare the effects of taVNS in relation to control stimulation. METHODS: We enrolled 17 healthy adults in this single-blind, crossover taVNS/fMRI trial. Based on parameters shown to affect heart rate in healthy volunteers, participants received either left tragus (active) or earlobe (control) stimulation at 500 µs 25 HZ for 60 s (repeated 3 times over 6 min). Whole brain fMRI analysis was performed exploring the effect of: active stimulation, control stimulation, and the comparison. Region of interest analysis of the midbrain and brainstem was also conducted. RESULTS: Active stimulation produced significant increased BOLD signal in the contralateral postcentral gyrus, bilateral insula, frontal cortex, right operculum, and left cerebellum. Control stimulation produced BOLD signal activation in the contralateral postcentral gyrus. In the active vs. control contrast, tragus stimulation produced significantly greater BOLD increases in the right caudate, bilateral anterior cingulate, cerebellum, left prefrontal cortex, and mid-cingulate. CONCLUSION: Stimulation of the tragus activates the cerebral afferents of the vagal pathway and combined with our review of the literature suggest that taVNS is a promising form of VNS. Future taVNS/fMRI studies should systematically explore various parameters and alternative stimulation targets aimed to optimize this novel form of neuromodulation.


Subject(s)
Brain/physiology , Magnetic Resonance Imaging/methods , Transcutaneous Electric Nerve Stimulation/methods , Vagus Nerve Stimulation/methods , Adolescent , Adult , Cross-Over Studies , Female , Functional Neuroimaging , Healthy Volunteers , Humans , Male , Middle Aged , Single-Blind Method , Vagus Nerve/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...