Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters











Publication year range
1.
Front Mol Neurosci ; 17: 1362581, 2024.
Article in English | MEDLINE | ID: mdl-38516041

ABSTRACT

One of the hallmarks of Alzheimer's disease (AD) is the accumulation of beta-amyloid peptide (Aß) leading to formation of soluble neurotoxic Aß oligomers and insoluble amyloid plaques in various parts of the brain. Aß undergoes post-translational modifications that alter its pathogenic properties. Aß is produced not only in brain, but also in the peripheral tissues. Such Aß, including its post-translationally modified forms, can enter the brain from circulation by binding to RAGE and contribute to the pathology of AD. However, the transport of modified forms of Aß across the blood-brain barrier (BBB) has not been investigated. Here, we used a transwell BBB model as a controlled environment for permeability studies. We found that Aß42 containing isomerized Asp7 residue (iso-Aß42) and Aß42 containing phosphorylated Ser8 residue (pS8-Aß42) crossed the BBB better than unmodified Aß42, which correlated with different contribution of endocytosis mechanisms to the transport of these isoforms. Using microscale thermophoresis, we observed that RAGE binds to iso-Aß42 an order of magnitude weaker than to Aß42. Thus, post-translational modifications of Aß increase the rate of its transport across the BBB and modify the mechanisms of the transport, which may be important for AD pathology and treatment.

2.
Anal Chem ; 96(1): 127-136, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38126724

ABSTRACT

In vitro/in vivo detection of copper ions is a challenging task but one which is important in the development of new approaches to the diagnosis and treatment of cancer and hereditary diseases such as Alzheimer's, Wilson's, etc. In this paper, we present a nanopipette sensor capable of measuring Cu2+ ions with a linear range from 0.1 to 10 µM in vitro and in vivo. Using the gold-modified nanopipette sensor with a copper chelating ligand, we evaluated the accumulation ability of the liposomal form of an anticancer Cu-containing complex at three levels of biological organization. First, we detected Cu2+ ions in a single cell model of human breast adenocarcinoma MCF-7 and in murine melanoma B16 cells. The insertion of the nanoelectrode did not result in leakage of the cell membrane. We then evaluated the distribution of the Cu-complex in MCF-7 tumor spheroids and found that the diffusion-limited accumulation was a function of the depth, typical for 3D culture. Finally, we demonstrated the use of the sensor for Cu2+ ion detection in the brain of an APP/PS1 transgenic mouse model of Alzheimer's disease and tumor-bearing mice in response to injection (2 mg kg-1) of the liposomal form of the anticancer Cu-containing complex. Enhanced stability and selectivity, as well as distinct copper oxidation peaks, confirmed that the developed sensor is a promising tool for testing various types of biological systems. In summary, this research has demonstrated a minimally invasive electrochemical technique with high temporal resolution that can be used for the study of metabolism of copper or copper-based drugs in vitro and in vivo.


Subject(s)
Alzheimer Disease , Neoplasms , Mice , Humans , Animals , Copper , Alzheimer Disease/diagnosis , Ions , Electrochemical Techniques
3.
Int J Mol Sci ; 24(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003258

ABSTRACT

Inactivation of enzymes responsible for biosynthesis of the cell wall component of ADP-glycero-manno-heptose causes the development of oxidative stress and sensitivity of bacteria to antibiotics of a hydrophobic nature. The metabolic precursor of ADP-heptose is sedoheptulose-7-phosphate (S7P), an intermediate of the non-oxidative branch of the pentose phosphate pathway (PPP), in which ribose-5-phosphate and NADPH are generated. Inactivation of the first stage of ADP-heptose synthesis (ΔgmhA) prevents the outflow of S7P from the PPP, and this mutant is characterized by a reduced biosynthesis of NADPH and of the Glu-Cys-Gly tripeptide, glutathione, molecules known to be involved in the resistance to oxidative stress. We found that the derepression of purine biosynthesis (∆purR) normalizes the metabolic equilibrium in PPP in ΔgmhA mutants, suppressing the negative effects of gmhA mutation likely via the over-expression of the glycine-serine pathway that is under the negative control of PurR and might be responsible for the enhanced synthesis of NADPH and glutathione. Consistently, the activity of the soxRS system, as well as the level of glutathionylation and oxidation of proteins, indicative of oxidative stress, were reduced in the double ΔgmhAΔpurR mutant compared to the ΔgmhA mutant.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , NADP/metabolism , Purines/pharmacology , Purines/metabolism , Heptoses/chemistry , Heptoses/metabolism , Glutathione/metabolism , Pentose Phosphate Pathway
4.
Anal Chem ; 95(43): 15943-15949, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37856787

ABSTRACT

ß-Amyloid aggregation on living cell surfaces is described as responsible for the neurotoxicity associated with different neurodegenerative diseases. It is suggested that the aggregation of ß-amyloid (Aß) peptide on neuronal cell surface leads to various deviations of its vital function due to myriad pathways defined by internalization of calcium ions, apoptosis promotion, reduction of membrane potential, synaptic activity loss, etc. These are associated with structural reorganizations and pathologies of the cell cytoskeleton mainly involving actin filaments and microtubules and consequently alterations of cell mechanical properties. The effect of amyloid oligomers on cells' Young's modulus has been observed in a variety of studies. However, the precise connection between the formation of amyloid aggregates on cell membranes and their effects on the local mechanical properties of living cells is still unresolved. In this work, we have used correlative scanning ion-conductance microscopy (SICM) to study cell topography, Young's modulus mapping, and confocal imaging of Aß aggregate formation on living cell surfaces. However, it is well-known that the cytoskeleton state is highly connected to the intracellular level of reactive oxygen species (ROS). The effect of Aß leads to the induction of oxidative stress, actin polymerization, and stress fiber formation. We measured the reactive oxygen species levels inside single cells using platinum nanoelectrodes to demonstrate the connection of ROS and Young's modulus of cells. SICM can be successfully applied to studying the cytotoxicity mechanisms of Aß aggregates on living cell surfaces.


Subject(s)
Amyloid beta-Peptides , Microscopy , Reactive Oxygen Species/metabolism , Amyloid beta-Peptides/chemistry , Cytoskeleton/metabolism , Cell Membrane/metabolism , Amyloid/chemistry , Peptide Fragments/chemistry
5.
Int J Mol Sci ; 24(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37686361

ABSTRACT

Hemoglobin is the main protein of red blood cells that provides oxygen transport to all cells of the human body. The ability of hemoglobin to bind the main low-molecular-weight thiol of the cell glutathione, both covalently and noncovalently, is not only an important part of the antioxidant protection of red blood cells, but also affects its affinity for oxygen in both cases. In this study, the properties of oxyhemoglobin in complex with reduced glutathione (GSH) and properties of glutathionylated hemoglobin bound to glutathione via an SS bond were characterized. For this purpose, the methods of circular dichroism, Raman spectroscopy, infrared spectroscopy, tryptophan fluorescence, differential scanning fluorimetry, and molecular modeling were used. It was found that the glutathionylation of oxyhemoglobin caused changes in the secondary structure of the protein, reducing the alpha helicity, but did not affect the heme environment, tryptophan fluorescence, and the thermostability of the protein. In the noncovalent complex of oxyhemoglobin with reduced glutathione, the secondary structure of hemoglobin remained almost unchanged; however, changes in the heme environment and the microenvironment of tryptophans, as well as a decrease in the protein's thermal stability, were observed. Thus, the formation of a noncovalent complex of hemoglobin with glutathione makes a more significant effect on the tertiary and quaternary structure of hemoglobin than glutathionylation, which mainly affects the secondary structure of the protein. The obtained data are important for understanding the functioning of glutathionylated hemoglobin, which is a marker of oxidative stress, and hemoglobin in complex with GSH, which appears to deposit GSH and release it during deoxygenation to increase the antioxidant protection of cells.


Subject(s)
Antioxidants , Oxyhemoglobins , Humans , Tryptophan , Hemoglobins , Glutathione , Heme , Oxygen
6.
Int J Mol Sci ; 24(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37511001

ABSTRACT

Amyloid-ß (Aß) is a peptide formed by 39-43 amino acids, heterogenous by the length of its C-terminus. Aß constitutes a subnanomolar monomeric component of human biological fluids; however, in sporadic variants of Alzheimer's disease (AD), it forms soluble neurotoxic oligomers and accumulates as insoluble extracellular polymeric aggregates (amyloid plaques) in the brain tissues. The plaque formation is controlled by zinc ions; therefore, abnormal interactions between the ions and Aß seem to take part in the triggering of sporadic AD. The amyloid plaques contain various Aß isoforms, among which the most common is Aß with an isoaspartate in position 7 (isoD7). The spontaneous conversion of D7 to isoD7 is associated with Aß aging. Aß molecules with isoD7 (isoD7-Aß) easily undergo zinc-dependent oligomerization, and upon administration to transgenic animals (mice, nematodes) used for AD modeling, act as zinc-dependent seeds of the pathological aggregation of Aß. The formation of zinc-bound homo- and hetero-oligomers with the participation of isoD7-Aß is based on the rigidly structured segment 11-EVHH-14, located in the Aß metal binding domain (Aß16). Some hereditary variants of AD are associated with familial mutations within the domain. Among these, the most susceptible to zinc-dependent oligomerization is Aß with Taiwan (D7H) mutation (D7H-Aß). In this study, the D7H-Aß metal binding domain (D7H-Aß16) has been used as a model to establish the molecular mechanism of zinc-induced D7H-Aß oligomerization through turbidimetry, dynamic light scattering, isothermal titration calorimetry, mass spectrometry, and computer modelling. Additionally, the modeling data showed that a molecule of D7H-Aß, as well as isoD7-Aß in combination with two Aß molecules, renders a stable zinc-induced heterotrimer. The trimers are held together by intermolecular interfaces via zinc ions, with the primary interfaces formed by 11-EVHH-14 sites of the interacting trimer subunits. In summary, the obtained results confirm the role of the 11-EVHH-14 region as a structure and function determinant for the zinc-dependent oligomerization of all known Aß species (including various chemically modified isoforms and AD-associated mutants) and point at this region as a potent target for drugs aimed to stop amyloid plaque formation in both sporadic and hereditary variants of AD.


Subject(s)
Alzheimer Disease , Humans , Animals , Mice , Alzheimer Disease/metabolism , Zinc/metabolism , Taiwan , Plaque, Amyloid , Amyloid beta-Peptides/metabolism , Protein Isoforms/genetics , Mutation , Ions
7.
Biomolecules ; 13(6)2023 05 31.
Article in English | MEDLINE | ID: mdl-37371496

ABSTRACT

The biogenic polyamines, spermidine (Spd) and spermine (Spm), are present at millimolar concentrations in all eukaryotic cells, where they participate in the regulation of vitally important cellular functions. Polyamine analogs and derivatives are a traditional and important instrument for the investigation of the cellular functions of polyamines, enzymes of their metabolism, and the regulation of the biosynthesis of antizyme-a key downregulator of polyamine homeostasis. Here, we describe convenient gram-scale syntheses of a set of C-methylated analogs of Spd. The biochemical properties of these compounds and the possibility for the regulation of their activity by moving a methyl group along the polyamine backbone and by changing the stereochemistry of the chiral center(s) are discussed.


Subject(s)
Biogenic Polyamines , Spermidine , Polyamines/metabolism , Spermine/metabolism , Homeostasis
8.
Biophys Rev ; 15(2): 183-197, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37124923

ABSTRACT

The deposition of beta-amyloid (Aß) aggregates in the brain, accompanied by impaired cognitive function, is a characteristic feature of Alzheimer's disease (AD). An important role in this process is played by vascular disorders, in particular, a disturbance of the blood-brain barrier (BBB). The BBB controls the entry of Aß from plasma to the brain via the receptor for advanced glycation end products (RAGE) and the removal of brain-derived Aß via the low-density lipoprotein receptor-related protein (LRP1). The balance between the input of Aß to the brain from the periphery and its output is disturbed during AD. Aß changes the redox-status of BBB cells, which in turn changes the functioning of mitochondria and disrupts the barrier function of endothelial cells by affecting tight junction proteins. Aß oligomers have the greatest toxic effect on BBB cells, and oligomers are most rapidly transferred by transcytosis from the brain side of the BBB to the blood side. Both the cytotoxic effect of Aß and the impairment of barrier function are partly due to the interaction of Aß monomers and oligomers with membrane-bound RAGE. AD therapies based on the disruption of this interaction or the creation of decoys for Aß are being developed. The question of the transfer of various Aß isoforms through the BBB is important, since it can influence the development of AD. It is shown that the rate of input of Aß40 and Aß42 from the blood into the brain is different. The actual question of the transfer of pathogenic Aß isoforms with post-translational modifications or mutations through the BBB still remains open.

9.
Int J Mol Sci ; 24(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37108298

ABSTRACT

Primary open-angle glaucoma (POAG) is a frequent blindness-causing neurodegenerative disorder characterized by optic nerve and retinal ganglion cell damage most commonly due to a chronic increase in intraocular pressure. The preservation of visual function in patients critically depends on the timeliness of detection and treatment of the disease, which is challenging due to its asymptomatic course at early stages and lack of objective diagnostic approaches. Recent studies revealed that the pathophysiology of glaucoma includes complex metabolomic and proteomic alterations in the eye liquids, including tear fluid (TF). Although TF can be collected by a non-invasive procedure and may serve as a source of the appropriate biomarkers, its multi-omics analysis is technically sophisticated and unsuitable for clinical practice. In this study, we tested a novel concept of glaucoma diagnostics based on the rapid high-performance analysis of the TF proteome by differential scanning fluorimetry (nanoDSF). An examination of the thermal denaturation of TF proteins in a cohort of 311 ophthalmic patients revealed typical profiles, with two peaks exhibiting characteristic shifts in POAG. Clustering of the profiles according to peaks maxima allowed us to identify glaucoma in 70% of cases, while the employment of artificial intelligence (machine learning) algorithms reduced the amount of false-positive diagnoses to 13.5%. The POAG-associated alterations in the core TF proteins included an increase in the concentration of serum albumin, accompanied by a decrease in lysozyme C, lipocalin-1, and lactotransferrin contents. Unexpectedly, these changes were not the only factor affecting the observed denaturation profile shifts, which considerably depended on the presence of low-molecular-weight ligands of tear proteins, such as fatty acids and iron. Overall, we recognized the TF denaturation profile as a novel biomarker of glaucoma, which integrates proteomic, lipidomic, and metallomic alterations in tears, and monitoring of which could be adapted for rapid non-invasive screening of the disease in a clinical setting.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Humans , Glaucoma, Open-Angle/drug therapy , Proteomics/methods , Artificial Intelligence , Glaucoma/diagnosis , Glaucoma/complications , Eye/metabolism , Intraocular Pressure , Biomarkers/metabolism
10.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108418

ABSTRACT

Listeria monocytogenes virulence factor InlB specifically interacts with the receptors c-Met and gC1q-R. Both receptors are present in non-professional and professional phagocytes, including macrophages. Phylogenetically defined InlB isoforms differently support invasion into non-professional phagocytes. This work deals with the effects of InlB isoforms on L. monocytogenes uptake and intracellular proliferation in human macrophages. Three isoforms of the receptor binding domain (idInlB) were derived from phylogenetically distinct L. monocytogenes strains belonging to the highly virulent CC1 (idInlBCC1), medium-virulence CC7 (idInlBCC7), and low-virulence CC9 (idInlBCC9) clonal complexes. The constant dissociation increased in the order idInlBCC1 << idInlBCC7 < idInlBCC9 for interactions with c-Met, and idInlBCC1 ≈ idInlBCC7 < idInlBCC9 for interactions with gC1q-R. The comparison of uptake and intracellular proliferation of isogenic recombinant strains which expressed full-length InlBs revealed that the strain expressing idInlBCC1 proliferated in macrophages twice as efficiently as other strains. Macrophage pretreatment with idInlBCC1 followed by recombinant L. monocytogenes infection disturbed macrophage functions decreasing pathogen uptake and improving its intracellular multiplication. Similar pretreatment with idInlBCC7 decreased bacterial uptake but also impaired intracellular multiplication. The obtained results demonstrated that InlB impaired macrophage functions in an idInlB isoform-dependent manner. These data suggest a novel InlB function in L. monocytogenes virulence.


Subject(s)
Listeria monocytogenes , Listeria , Listeriosis , Humans , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Macrophages/metabolism , Membrane Proteins/metabolism , Protein Isoforms/metabolism , Virulence Factors/metabolism , Proto-Oncogene Proteins c-met/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL