Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Clin Endocrinol Diabetes ; 116(7): 371-84, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18561091

ABSTRACT

The endometrium undergoes marked functional changes during estrous cycle and pregnancy. As the adjacent environment of the conceptus, it represents the maternal interface for embryo-maternal communication, which is essential to maintain pregnancy. Transcriptome studies provide the unique opportunity to assess molecular profiles changing in response to endocrine or metabolic stimuli or to embryonic pregnancy recognition signals. Here we review the current state of transcriptome profiling techniques and the results of a series of transciptome studies comparing bovine endometrium samples during the estrous cycle or endometrium samples from pregnant vs. non-pregnant animals. These studies revealed specific mRNA profiles which are characteristic for the functional status of the endometrium. Transcriptome studies of endometrial samples recovered during the pre-attachment period identified many interferon-stimulated genes, genes that are possibly involved in embryo-maternal immune modulation ( C1S, C1R, C4, SERPING1, UTMP, CD81, IFITM1, BST2), as well as genes affecting cell adhesion ( AGRN, CD81, LGALS3BP, LGALS9, GPLD1, MFGE8, and TGM2) and remodeling of the endometrium ( CLDN4, MEP1B, LGMN, MMP19, TIMP2, TGM2, MET, and EPSTI1). The results of these transcriptome studies were compared to those of similar microarray analyses in human, mouse and Rhesus monkey to identify similarities in endometrial biology between mammalian species and species-specific differences. Future studies will cover dynamic transcriptome changes between different stages of early pregnancy, the relationship between metabolic problems in dairy cows and the functionality of reproductive tissues as well as endometrium transcriptome profiles in recipients of somatic cell nuclear transfer embryos.


Subject(s)
Endometrium/physiology , Estrus/physiology , Gene Expression Profiling , Pregnancy, Animal/physiology , Animals , Blood Flow Velocity , Cattle , Cattle Diseases/genetics , Endometriosis/genetics , Endometriosis/veterinary , Estrus/genetics , Extracellular Matrix/physiology , Female , Gene Expression Profiling/methods , Neovascularization, Physiologic/genetics , Pregnancy , Pregnancy, Animal/genetics , RNA, Messenger/genetics
2.
J Dairy Sci ; 90(9): 4420-3, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17699062

ABSTRACT

Fertility problems are the main reason for slaughter of high-performance milk cows, because elongated calving intervals result in financial losses for the farmer and retard genetic progress. Genetic improvement of fertility would be of great benefit, but functional traits for effective selection are missing. Recent advances in functional genomics tools like DNA microarrays could be the key to identify gene expression patterns in the endometrium that correlate with maternal fertility. Therefore, a first version of a bovine oviduct and endometrium cDNA array was established that contains a set of 1,440 cDNA clones and long oligonucleotides representing 950 different genes. The major part of these genes has been identified in a series of differential gene expression studies in endometrium (different stages of the estrous cycle, d 18 pregnant vs. nonpregnant) and in oviduct epithelial cells (different stages of the estrous cycle) using a combination of subtracted cDNA libraries and cDNA array hybridization. Furthermore, cDNA clones of genes, which showed no changes in their mRNA levels in the analyzed tissues, were added as controls. Reproducibility of the array hybridization, a comparison with the Affymetrix bovine genome array, and confirmation of differential gene expression with reverse transcription-quantitative PCR is shown. Potential future applications include systematic studies of interactions between metabolic status and functionality of the endometrium to identify genes that could be used for differential diagnosis of fertility problems. Further, endometrium transcriptome profiles may serve as novel traits to improve fertility by genetic selection.


Subject(s)
Cattle/genetics , Endometrium/metabolism , Fallopian Tubes/metabolism , Gene Expression , Oligonucleotide Array Sequence Analysis , Animals , Endometrium/chemistry , Estrous Cycle , Fallopian Tubes/chemistry , Female , Gene Library , Nucleic Acid Hybridization , Pregnancy , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...