Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38985575

ABSTRACT

Sodium ions and protons regulate various fundamental processes at the cell and tissue levels across all biological kingdoms. It is therefore pivotal for bioelectronic devices, such as biosensors and biotransducers, to control the transport of these ions through biological membranes. Our study explores the regulation of proton and sodium concentrations by integrating an Na+-type ATP synthase, a glucose dehydrogenase (GDH), and a urease into a multienzyme logic system. This system is designed to operate using various chemical control input signals, while the output current corresponds to the local change in proton or sodium concentrations. Therein, a H+ and Na+ biotransducer was integrated to fulfill the roles of signal transducers for the monitoring and simultaneous control of Na+ and H+ levels, respectively. To increase the proton concentration at the output, we utilized GDH driven by the inputs of glucose and nicotinamide adenine dinucleotide (NAD+), while recorded the signal change from the biotransducer, together acting as an AND enzyme logic gate. On the contrary, we introduced urease enzyme which hydrolyzed urea to control the decrease in proton concentration, serving as a NOT gate and reset. By integrating these two enzyme logic gates we formed a simple multienzyme logic system for the control of proton concentrations. Furthermore, we also demonstrate a more complex, Na+-type ATP synthase-urease multienzyme logic system, controlled by the two different inputs of ADP and urea. By monitoring the voltage of the peak current as the output signal, this logic system acts as an AND enzyme logic gate. This study explores how multienzyme logic systems can modulate biologically important ion concentrations, opening the door toward advanced biological on-demand control of a variety of bioelectronic enzyme-based devices, such as biosensors and biotransducers.

2.
ACS Appl Mater Interfaces ; 16(6): 7480-7488, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38295806

ABSTRACT

Ion channels are membrane proteins that allow ionic signals to pass through channel pores for biofunctional modulations. However, biodevices that integrate bidirectional biological signal transmission between a device and biological converter through supported lipid bilayers (SLBs) while simultaneously controlling the process are lacking. Therefore, in this study, we aimed to develop a hybrid biotransducer composed of ATP synthase and proton channel gramicidin A (gA), controlled by a sulfonated polyaniline (SPA) conducting polymer layer deposited on a microelectrode, and to simulate a model circuit for this system. We controlled proton transport across the gA channel using both electrical and chemical input signals by applying voltage to the SPA or introducing calcium ions (inhibitor) and ethylenediaminetetraacetic acid molecules (inhibitor remover). The insertion of gA and ATP synthase into SLBs on microelectrodes resulted in an integrated biotransducer, in which the proton current was controlled by the flux of adenosine diphosphate molecules and calcium ions. Lastly, we created an XOR logic gate as an enzymatic logic system where the output proton current was controlled by Input A (ATP synthase) and Input B (calcium ions), making use of the unidirectional and bidirectional transmission of protons in ATP synthase and gA, respectively. We combined gA, ATP synthase, and SPA as a hybrid bioiontronics system to control bidirectional or unidirectional ion transport across SLBs in biotransducers. Thus, our findings are potentially relevant for a range of advanced biological and medical applications.


Subject(s)
Gramicidin , Protons , Gramicidin/chemistry , Gramicidin/metabolism , Calcium , Membrane Potentials , Ions , Lipid Bilayers/chemistry , Adenosine Triphosphate
3.
Elife ; 112022 02 02.
Article in English | MEDLINE | ID: mdl-35107420

ABSTRACT

In FoF1-ATP synthase, proton translocation through Fo drives rotation of the c-subunit oligomeric ring relative to the a-subunit. Recent studies suggest that in each step of the rotation, key glutamic acid residues in different c-subunits contribute to proton release to and proton uptake from the a-subunit. However, no studies have demonstrated cooperativity among c-subunits toward FoF1-ATP synthase activity. Here, we addressed this using Bacillus PS3 ATP synthase harboring a c-ring with various combinations of wild-type and cE56D, enabled by genetically fused single-chain c-ring. ATP synthesis and proton pump activities were decreased by a single cE56D mutation and further decreased by double cE56D mutations. Moreover, activity further decreased as the two mutation sites were separated, indicating cooperation among c-subunits. Similar results were obtained for proton transfer-coupled molecular simulations. The simulations revealed that prolonged proton uptake in mutated c-subunits is shared between two c-subunits, explaining the cooperation observed in biochemical assays.


Cells need to be able to store and transfer energy to fuel their various activities. To do this, they produce a small molecule called ATP to carry the energy, which is then released when the ATP is broken down. An enzyme found in plants, animals and bacteria, called FoF1 ATP synthase, can both create and use ATP. When it does this, protons, or positive hydrogen ions, are transported across cellular boundaries called membranes. The region of the enzyme that is responsible for pumping the protons contains different parts known as the c-ring and the a-subunit. The movement of protons drives the c-ring to rotate relative to the a-subunit, which leads to producing ATP. Previous research using simulations and the protein structures found there are two or three neighbouring amino acids in the c-ring that face the a-subunit, suggesting that these amino acids act together to drive the rotation. To test this hypothesis, Mitome et al. mutated these amino acids to examine the effect on the enzyme's ability to produce ATP. A single mutation reduced the production of ATP, which decreased even further with mutations in two of the amino acids. The extent of this decrease depended on the distance between the two mutations in the c-ring. Simulations of these changes also found similar results. This indicates there is coordination between different parts of the c-ring to increase the rate of ATP production. This study offers new insights into the molecular processes controlling ATP synthesis and confirms previous theoretical research. This will interest specialists in bioenergetics because it addresses a fundamental biological question with broad impact.


Subject(s)
Bacterial Proton-Translocating ATPases/chemistry , Bacterial Proton-Translocating ATPases/metabolism , Protons , Bacillus , Bacterial Proton-Translocating ATPases/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Molecular Dynamics Simulation , Mutation , Protein Conformation
4.
Biophys Physicobiol ; 14: 41-47, 2017.
Article in English | MEDLINE | ID: mdl-28560128

ABSTRACT

The Fo-a subunit of the Na+-transporting FoF1 ATP synthase from Propionigenium modestum plays a key role in Na+ transport. It forms half channels that allow Na+ to enter and leave the buried carboxyl group on Fo-c subunits. The essential Arg residue R226, which faces the carboxyl group of Fo-c subunits in the middle of transmembrane helix 5 of the Fo-a subunit, separates the cytoplasmic side and periplasmic half-channels. To elucidate contributions of other amino acid residues of transmembrane helix 5 using hybrid FoF1 (Fo from P. modestum and F1 from thermophilic Bacillus PS3), 25 residues were individually mutated to Cys, and effects of modification with the SH-modifying agent N-ethylmaleimide (NEM) on ATP synthesis and hydrolysis activity were analyzed. NEM significantly inhibited ATP synthesis and hydrolysis as well as proton pumping activities of A214C, G215C, A218C, I223C (cytoplasmic side from R226), and N230C (periplasmic side from R226) mutants and inhibited ATP synthesis activity of the K219C mutant (cytoplasmic side from R226). Thus, these residues contribute to the integrity of the Na+ half channel, and both half channels are present in the Fo-a subunit.

5.
Biochem J ; 430(1): 171-7, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20518749

ABSTRACT

In F(o)F(1) (F(o)F(1)-ATP synthase), proton translocation through F(o) drives rotation of the oligomer ring of F(o)-c subunits (c-ring) relative to F(o)-a. Previous reports have indicated that a conserved arginine residue in F(o)-a plays a critical role in the proton transfer at the F(o)-a/c-ring interface. Indeed, we show in the present study that thermophilic F(o)F(1s) with substitution of this arginine (aR169) to other residues cannot catalyse proton-coupled reactions. However, mutants with substitution of this arginine residue by a small (glycine, alanine, valine) or acidic (glutamate) residue mediate the passive proton translocation. This translocation requires an essential carboxy group of F(o)-c (cE56) since the second mutation (cE56Q) blocks the translocation. Rotation of the c-ring is not necessary because the same arginine mutants of the 'rotation-impossible' (c(10)-a)F(o)F(1), in which the c-ring and F(o)-a are fused to a single polypeptide, also exhibits the passive proton translocation. The mutant (aR169G/Q217R), in which the arginine residue is transferred to putatively the same topological position in the F(o)-a structure, can block the passive proton translocation. Thus the conserved arginine residue in F(o)-a ensures proton-coupled c-ring rotation by preventing a futile proton shortcut.


Subject(s)
Arginine/physiology , Bacterial Proteins/metabolism , Ion Channels/physiology , Proton-Translocating ATPases/metabolism , Arginine/genetics , Bacillus/enzymology , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Membrane Potentials , Mutation , Protein Subunits/genetics , Protein Subunits/metabolism , Proton-Translocating ATPases/genetics , Protons , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
Proc Natl Acad Sci U S A ; 101(33): 12159-64, 2004 Aug 17.
Article in English | MEDLINE | ID: mdl-15302927

ABSTRACT

In a rotary motor F(o)F(1)-ATP synthase that couples H(+) transport with ATP synthesis/hydrolysis, it is thought that an F(o)c subunit oligomer ring (c-ring) in the membrane rotates as protons pass through F(o) and a 120 degrees rotation produces one ATP at F(1). Despite several structural studies, the copy number of F(o)c subunits in the c-ring has not been determined for any functional F(o)F(1). Here, we have generated and isolated thermophilic Bacillus F(o)F(1), each containing genetically fused 2-mer-14-mer c (c(2)-c(14)). Among them, F(o)F(1) containing c(2), c(5), or c(10) showed ATP-synthesis and other activities. When F(1) was removed, F(o) containing c(10) worked as an H(+) channel but F(o)s containing c(9), c(11) or c(12) did not. Thus, the c-ring of functional F(o)F(1) of this organism is a decamer. The inevitable consequence of this finding is noninteger ratios of rotation step sizes of F(1)/F(o) (120 degrees /36 degrees ) and of H(+)/ATP (10:3). This step-mismatch necessitates elastic twisting of the rotor shaft (and/or the side stalk) during rotation and permissive coupling between unit rotations by H(+) transport at F(o) and elementary events in catalysis at F(1).


Subject(s)
Bacterial Proton-Translocating ATPases/chemistry , Adenosine Triphosphate/metabolism , Bacillus/enzymology , Bacillus/genetics , Bacterial Proton-Translocating ATPases/genetics , Bacterial Proton-Translocating ATPases/metabolism , Elasticity , Models, Molecular , Protein Conformation , Protein Structure, Quaternary , Protons , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Rotation , Thermodynamics
8.
Eur J Biochem ; 269(1): 53-60, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11784298

ABSTRACT

F1-ATPase is inactivated by entrapment of MgADP in catalytic sites and reactivated by MgATP or P(i). Here, using a mutant alpha(3)beta(3)gamma complex of thermophilic F(1)-ATPase (alpha W463F/beta Y341W) and monitoring nucleotide binding by fluorescence quenching of an introduced tryptophan, we found that P(i) interfered with the binding of MgATP to F(1)-ATPase, but binding of MgADP was interfered with to a lesser extent. Hydrolysis of MgATP by F(1)-ATPase during the experiments did not obscure the interpretation because another mutant, which was able to bind nucleotide but not hydrolyse ATP (alpha W463F/beta E190Q/beta Y341W), also gave the same results. The half-maximal concentrations of P(i) that suppressed the MgADP-inhibited form and interfered with MgATP binding were both approximately 20 mm. It is likely that the presence of P(i) at a catalytic site shifts the equilibrium from the MgADP-inhibited form to the enzyme-MgADP-P(i) complex, an active intermediate in the catalytic cycle.


Subject(s)
Adenosine Diphosphate/pharmacology , Phosphates/pharmacology , Proton-Translocating ATPases/antagonists & inhibitors , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Catalytic Domain , Proton-Translocating ATPases/chemistry
9.
J Biol Chem ; 277(15): 13281-5, 2002 Apr 12.
Article in English | MEDLINE | ID: mdl-11815616

ABSTRACT

Coupling of proton flow and rotation in the F(0) motor of ATP synthase was investigated using the thermophilic Bacillus PS3 enzyme expressed functionally in Escherichia coli cells. Cysteine residues introduced into the N-terminal regions of subunits b and c of ATP synthase (bL2C/cS2C) were readily oxidized by treating the expressing cells with CuCl(2) to form predominantly a b-c cross-link with b-b and c-c cross-links being minor products. The oxidized ATP synthases, either in the inverted membrane vesicles or in the reconstituted proteoliposomes, showed drastically decreased proton pumping and ATPase activities compared with the reduced ones. Also, the oxidized F(0), either in the F(1)-stripped inverted vesicles or in the reconstituted F(0)-proteoliposomes, hardly mediated passive proton translocation through F(0). Careful analysis using single mutants (bL2C or cS2C) as controls indicated that the b-c cross-link was responsible for these defects. Thus, rotation of the c-oligomer ring relative to subunit b is obligatory for proton translocation; if there is no rotation of the c-ring there is no proton flow through F(0).


Subject(s)
Bacillus/enzymology , Proton-Translocating ATPases/metabolism , Base Sequence , DNA Primers , Ion Transport , Proton-Translocating ATPases/chemistry , Proton-Translocating ATPases/isolation & purification , Protons , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...