Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38894665

ABSTRACT

A series of cyclometalated (N^C^N) Pt(II)-platinum complexes featuring a terpyridine ligand with a non-coordinating nitrogen atom and a Pt-C bond was synthesized. In the presence of Ag+, the bis(isonitrile)Pt(II) complex formed a remarkable self-assembled helicoidal dimer stabilized by coordination of Ag(I) and metallophilic Pt-Ag interactions. Its assembly was observed in the solid state and maintained in solution. All complexes show strong luminescence and multiple emitting states, which could be rationalized based on solid state X-ray structures and coordinating environment.

2.
Chem Commun (Camb) ; 60(39): 5217-5220, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38656223

ABSTRACT

Hereby, we describe the synthesis of a self-assembled syn-cryptophane using dynamic nucleophilic aromatic substitution of tetrazines. 1H NMR cage titrations reveal that the tetramethylammonium cation binds under slow exchange conditions while counter-anions show a fast exchange regime. Finally, the cryptophane can be disassembled by the addition of thiols allowing guest release.

3.
Chemistry ; 30(8): e202303294, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37955588

ABSTRACT

Chiral molecular switches are attracting attention as they could pave the way to chiral molecular machines. Herein, we report on the design and synthesis of a single molecule chiral switch based on a cyclotriveratrylene scaffold, in which the chirality inversion is controlled by the solvent. Hemicryptophanes are built around a C3 cyclotriveratrylene chiral unit, with either M or P handedness, connected to another tripod and usually displaying an "out" configuration. Here, we demonstrate that solvents are able to control the "in" and "out" configurations of the CTV unit, creating a chiral molecular switch from (M/P)"in" to (P/M)"out" handedness. The full characterization of the "in" and "out" configurations and of the chirality switch were made possible by combining NMR, HPLC, ECD, DFT and molecular dynamics. Interestingly, bulky aromatic solvents such as 2-t-butylphenol favor the "in" configuration while polar aprotic solvents such as acetone favor the "out" configuration. This chiral switch was found to be fully reversible allowing the system to oscillate between two different M and P configurations several times upon the action of solvents stimuli.

SELECTION OF CITATIONS
SEARCH DETAIL
...