Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 21(34): 6830-6880, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37605948

ABSTRACT

DABCO (1,4-diazabicyclo[2.2.2]octane) has garnered a lot of interest for numerous organic transformations since it is a low-cost, environmentally friendly, reactive, manageable, non-toxic and basic organocatalyst with a high degree of selectivity. Moreover, DABCO functions as a nucleophile as well as a base in a variety of processes for the synthesis of a wide array of molecules, including carbocyclic and heterocyclic compounds. Protection and deprotection of functional groups and the formation of carbon-carbon bonds are also catalyzed by DABCO. The reagent also finds applications in the synthesis of functional groups like isothiocyanate, amide and ester. Application of DABCO in cycloaddition, coupling, aromatic nucleophilic substitution, ring-opening, oxidation and rearrangement reactions is also noteworthy. This is a state of the art review that has encompassed a variety of processes for the synthesis of organic frameworks using DABCO.

2.
Mol Divers ; 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36757655

ABSTRACT

Phenoxazines have sparked a lot of interest owing to their numerous applications in material science, organic light-emitting diodes, photoredox catalyst, dye-sensitized solar cells and chemotherapy. Among other things, they have antioxidant, antidiabetic, antimalarial, anti-alzheimer, antiviral, anti-inflammatory and antibiotic properties. Actinomycin D, which contains a phenoxazine moiety, functions both as an antibiotic and anticancer agent. Several research groups have worked on various structural modifications over the years in order to develop new phenoxazines with improved properties. Both phenothiazines and phenoxazines have gained prominence in medicine as pharmacological lead structures from their traditional uses as dyes and pigments. Organoelectronics and material sciences have recently found these compounds and their derivatives to be quite useful. Due to this, organic synthesis has been used in an unprecedented amount of exploratory alteration of the parent structures in an effort to create novel derivatives with enhanced biological and material capabilities. As a result, it is critical to conduct more frequent reviews of the work done in this area. Various stages of the synthetic transformation of phenoxazine scaffolds have been depicted in this article. This article aims to provide a state of the art review for the better understanding of the phenoxazine derivatives highlighting the progress and prospects of the same in medicinal and material applications.

3.
J Fluoresc ; 32(6): 2023-2052, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35829843

ABSTRACT

Carbazole is a unique template associated with several biological activities. It is due to the diverse and versatile biological properties of carbazole derivatives that they are of immense interest to the research community. 1-keto-1,2,3,4-tetrahydrocarbazoles are important synthetic intermediates to obtain carbazole derivatives. Several members of this family emit fluorescence on photoexcitation. In the context of biochemical and biophysical research, designing and characterising small molecule environment sensitive fluorophores is extremely significant. This article aims to be a state of the art review with synthetic and photophysical details of a variety of fluorophores based on 1-keto-1,2,3,4-tetrahydrocarbazole skeleton.


Subject(s)
Carbazoles , Fluorescent Dyes , Carbazoles/chemistry , Fluorescent Dyes/chemistry
4.
ACS Appl Mater Interfaces ; 10(5): 4582-4589, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29338178

ABSTRACT

Herein we have engineered a smart nuclear targeting thiol-modified riboflavin-gold nano assembly, RfS@AuNPs, which accumulates selectively in the nucleus without any nuclear-targeting peptides (NLS/RGD) and shows photophysically in vitro DNA intercalation. A theoretical model using Molecular Dynamics has been developed to probe the mechanism of formation and stability as well as dynamics of the RfS@AuNPs in aqueous solution and within the DNA microenvironment. The RfS@AuNPs facilitate the binucleated cell formation that is reflected in the significant increase of DNA damage marker, γ-H2AX as well as the arrest of most of the HeLa cells at the pre-G1 phase indicating cell death. Moreover, a significant upregulation of apoptotic markers confirms that the cell death occurs through the apoptotic pathway. Analyses of the microarray gene expression of RfS@AuNPs treated HeLa cells show significant alterations in vital biological processes necessary for cell survival. Taken together, our study reports a unique nuclear targeting mechanism through targeting the riboflavin receptors, which are upregulated in cancer cells and induce apoptosis in the targeted cells.


Subject(s)
DNA Damage , Apoptosis , Cell Line, Tumor , Gold , HeLa Cells , Humans , Riboflavin
5.
J Fluoresc ; 27(4): 1547-1558, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28434063

ABSTRACT

This paper vividly indicates that steady state as well as time-resolved fluorescence techniques can serve as highly sensitive monitors to explore the interactions of 5,7-dimethoxy-2,3,4,9-tetrahydro-1H-carbazol-1-one with model transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA). Besides these, we have used fluorescence anisotropy study to assess the degree of restrictions imparted by the micro-environments of serum albumins. Again, to speculate the triplet excited state interaction between such fluorophore and albumin proteins (BSA& HSA), laser flash-photolysis experiments have been carried out. Molecular docking experiments have also been performed to support the conclusions obtained from steady state experiments.


Subject(s)
Carbazoles/chemistry , Lasers , Molecular Docking Simulation , Photolysis , Serum Albumin, Bovine/chemistry , Serum Albumin/chemistry , Spectrometry, Fluorescence/methods , Animals , Carbazoles/metabolism , Cattle , Fluorescence , Fluorescent Dyes , Humans , Protein Binding , Serum Albumin/metabolism , Serum Albumin, Bovine/metabolism , Thermodynamics
6.
J Fluoresc ; 25(6): 1931-49, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26489935

ABSTRACT

We present here a detailed photophysical study of a recently synthesised fluorophore 8-methyl-8,9-dihydro-5H-[1,3]dioxolo[4,5-b]carbazol-6(7H)-one. This is a synthetic precursor of bio-active carbazole skeleton Clausenalene. Spectroscopic investigation of the fluorophore has been carried out in different protic and aprotic solvents, as well as in binary solvent mixtures, using absorption, steady-state and time-resolved fluorescence techniques. This fluorophore is particularly responsive to the hydrogen bonding nature as well as polarity of the solvent molecules. When considered in micelles and ß-cyclodextrin, this behaves as a reporter of its immediate microenvironment. Steady state and time resolved fluorometric and circular dichroism techniques have been used to explore the binding interaction of the fluorophore with transport proteins, bovine serum albumin and human serum albumin. The probable binding sites of the fluorophore in the proteinous environments have been evaluated from fluorescence resonance energy transfer study. Laser flash photolysis experiments also have been performed to observe the triplet excited state interaction between the fluorophore and albumin proteins.


Subject(s)
Carbazoles/chemistry , Fluorescent Dyes/chemistry , Serum Albumin/chemistry , Animals , Cattle , Fluorescence Resonance Energy Transfer , Humans , Photolysis , Solvents/chemistry , Spectrometry, Fluorescence , Surface-Active Agents/chemistry , Water/chemistry
7.
J Fluoresc ; 23(6): 1179-95, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23832682

ABSTRACT

Two new fluorophores, 6,7-dimethoxy-9-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-one (DMTCO) and 5-methyl-8,9-dihydro-5H-[1,3]dioxolo[4,5-b]carbazol-6(7H)-one (MDDCO), first of their kind, have been synthesized from the corresponding methoxy and methylenedioxy derivatives of 2,3,4,9-tetrahydro-1H-carbazol-1-one respectively. Comprehensive photophysical characterization of these compounds has been carried out in sixteen different homogeneous solvents and binary solvent mixtures. Both of these compounds are sensitive to solvent polarity, but the sensitivity is much higher in electronic excited state observed by steady-state and time-resolved fluorescence experiments than in ground state studied by UV-vis absorption spectroscopy. The fluorescence spectral shifts are linearly correlated with the empirical parameters of the protic solvents and also the quantitative influence of the empirical solvent parameters on the emission maxima of the compounds has been calculated. The change in dipole moment of the compounds in their excited state has been calculated from the shifts in corresponding emission maxima in pure solvents. A higher dipole moment change of both DMTCO and MDDCO in protic solvents is due to intermolecular hydrogen bonding which is further confirmed by the comparison of their behaviour in toluene-acetonitrile and toluene-methanol solvent mixtures. From structural features, MDDCO is more planar compared to DMTCO, which is reflected better in fluorescence quenching of the former with organic bases, N,N-dimethylaniline and N,N-diethylaniline. Laser flash photolysis experiments prove that the quenching interaction originates from photoinduced electron transfer from the bases to the compounds.


Subject(s)
Carbazoles/chemistry , Fluorescent Dyes/chemistry , Carbazoles/chemical synthesis , Fluorescent Dyes/chemical synthesis , Hydrogen Bonding , Molecular Structure , Photochemical Processes , Solutions , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...