Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Teach Teach Educ ; 142: 104540, 2024 May.
Article in English | MEDLINE | ID: mdl-38694559

ABSTRACT

Although teachers and administrators increasingly support the idea of student voice, questions remain about what "student voice" looks like in practice. This mixed methods study in two urban U.S. high schools explores what student voice practices in the classroom entail and how these practices relate to other pedagogical strategies. Findings reveal that student-teacher relationships, differentiated instruction, and choice serve as core building blocks for the use of student voice practices in the classroom. Findings also underscore the rarity of the student voice practices of seeking student feedback and input and engaging in collaborative decision-making with students.

2.
Langmuir ; 35(6): 2196-2208, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30590922

ABSTRACT

This article describes the preparation of hierarchically structured microsieves via a suitable combination of float-casting and inkjet-printing: A mixture of hydrophobized silica particles of 600 nm ± 20 nm diameter, a suitable non-water-soluble nonvolatile acrylic monomer, a nonvolatile photoinitiator, and volatile organic solvents is applied to a water surface. This mixture spontaneously spreads on the water surface; the volatile solvents evaporate and leave behind a layer of the monomer/initiator mixture comprising a monolayer of particles, each particle protruding out of the monomer layer at the top and bottom surface. Photopolymerization of the monomer converts this mixed layer into a solid composite membrane floating on the water surface. Onto this membrane, while still floating on the water surface, a hierarchical reinforcing structure based on a photocurable ink is inkjet-printed and solidified. In contrast to the nonreinforced membrane, the reinforced membrane can easily be lifted off the water surface without suffering damage. Subsequently, the silica particles are removed, and thus, the reinforced composite membrane is converted into a reinforced microsieve of 350 nm ± 50 nm thickness bearing uniform through pores of 465 nm ± 50 nm diameter. This reinforced microsieve is mounted into a filtration unit and used to filter model dispersions: its permeance for water at low Reynolds numbers is in accordance with established theories on the permeance of microsieves and significantly above the permeance of conventional filtration media; it retains particles exceeding the pore size, while letting particles smaller than the pore size pass.

3.
Nanotechnology ; 28(49): 495301, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-28994394

ABSTRACT

During the last years, intense pulsed light (IPL) processing has been employed and studied intensively for the drying and sintering of metal nanoparticle layers deposited by means of printing methods on flexible polymer substrates. IPL was found to be a very fast and substrate-gentle approach qualified for the field of flexible and large-area printed electronics, i.e. manufactured via roll-to-roll processing. In this contribution, IPL is used for the fine-patterning of printed silver nanoparticle layers. The patterning is obtained by induced and controlled crack formation in the thin silver layer due to the intense exposure of IPL. The crack formation is controlled by selection of the substrate material, the fine-tuning of the morphology of the silver layer and an application of a dielectric layer on top of the silver layer that acts as a stress concentrator. Careful optimization of the IPL parameters allowed to adjust the lateral width of the crack. This novel approach turned out to be a fast and reproducible high-resolution patterning process for multiple applications, e.g. to pattern the source-drain electrodes for all-inkjet-printed thin-film transistors.

SELECTION OF CITATIONS
SEARCH DETAIL
...