Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Sci Rep ; 14(1): 10253, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704431

ABSTRACT

The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.


Subject(s)
Antiviral Agents , Cytomegalovirus Infections , Elastin , Muromegalovirus , Peptides , Phosphoproteins , Viral Matrix Proteins , Animals , Elastin/chemistry , Elastin/metabolism , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Mice , Antiviral Agents/pharmacology , Antiviral Agents/pharmacokinetics , Antiviral Agents/chemistry , Peptides/pharmacology , Peptides/chemistry , Muromegalovirus/drug effects , Humans , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Cytomegalovirus/drug effects , Capsid/metabolism , Capsid/drug effects , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/pharmacokinetics , Disease Models, Animal , Elastin-Like Polypeptides
2.
Reprod Sci ; 30(12): 3480-3494, 2023 12.
Article in English | MEDLINE | ID: mdl-37640890

ABSTRACT

Human fertility regulation is a major way to control overpopulation. In this perspective, this study emphasized the in vitro effect of hydro-methanol extract of Tinospora cordifolia (TCHME) stem for spermicidal and reproductive hypo-functions using human and rat samples. Control, 0.5-, 1-, and 2-mg TCHME-charged groups were considered to assess the relevant parameters. Levels of spermiological parameters like sperm motility, viability, the integrity of plasma and acrosomal membrane, and nuclear chromatin decondensation were significantly reduced (p < 0.05) in the dose- and duration-dependent TCHME-charged groups compared to the control. The inhibitory concentration 50 (IC50) of TCHME on motile human and rat sperms were 0.8 and 0.4 mg/ml, respectively. Testicular androgenic key enzymes and antioxidant enzymes (human sperm pellet, testes, and epididymis of rat)' activities were significantly diminished (p < 0.05), while antioxidant enzymes' activities were significantly elevated (p < 0.05) in renal and insignificantly (p > 0.05) elevated in hepatic tissues of rat in TCHME-charged groups compared to the control. Significant elevation (p < 0.05) of thiobarbituric acid reactive substances (TBARS)' level in human sperm pellet, testes, and epididymis of rats and significant diminution (p < 0.05) in TBARS levels of liver and kidney were observed in TCHME-charged groups. It focused that TCHME is more potent for stress imposition on reproductive tissues and sperm compared to the other tested tissues. Non-significant alterations (p > 0.05) in glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) activities in the said organs of rat indicated its non-toxic effect. It highlighted that TCHME possesses spermicidal and reproductive tissue-specific effects which strengthen the possibilities of male contraceptive development from it.


Subject(s)
Methanol , Tinospora , Humans , Rats , Male , Animals , Antioxidants/pharmacology , Thiobarbituric Acid Reactive Substances , Plant Extracts/pharmacology , Sperm Motility , Seeds , Spermatozoa
3.
Indian J Gastroenterol ; 41(6): 643-648, 2022 12.
Article in English | MEDLINE | ID: mdl-36484785

ABSTRACT

Hydatid cyst (HC) is uncommon in children and usually involves a single organ, the lung being the most common site followed by the liver. A series of 18 children who presented with HC at different organs of the body managed at our institute over a period of 5 years is presented here. The clinico-radiological evaluation was done in all patients followed by pharmacotherapy/surgery and was followed up for 2 years. Demographic data, organs of involvement, clinical presentations and investigations, response to oral albendazole therapy, surgical procedures, operative findings, perioperative clinical courses, and surgical outcomes were recorded. The mean age of presentation was 7.7 years with a male:female ratio of 11:7. All patients were symptomatic at presentation and four (22.22%) had atypical symptoms (obstructive jaundice, bladder outlet obstruction, and acute abdominal pain). Liver HC was more common than lung HC. Three patients (16.6%) had synchronous involvement of the lung and liver/spleen. All the patients underwent surgical excision of the cyst as none of them responded to preoperative pharmacotherapy. Open surgery was done in 15 patients and laparoscopic excision was carried out in three (16.6%). Two patients had abnormal communications (cysto-biliary/cysto-bronchial), which were managed successfully. Neither any major perioperative morbidity nor mortality was nor any recurrence was seen in a 2-year clinical follow-up, no significant perioperative morbidity or mortality occurred, and no recurrence was noted. In conclusion, single organ HC is more common in children, with more prevalence of hepatic than pulmonary HC. Early surgical excision of the cyst should be considered (preferably laparoscopic whenever possible) instead of pharmacotherapy.


Subject(s)
Cysts , Echinococcosis, Hepatic , Echinococcosis , Humans , Male , Child , Female , Echinococcosis/diagnosis , Echinococcosis/therapy , Albendazole/therapeutic use , Cysts/drug therapy
4.
J Food Biochem ; 46(10): e14290, 2022 10.
Article in English | MEDLINE | ID: mdl-35796441

ABSTRACT

Men with diabetes have negative effects on reproduction that causes sexual dysfunction. Medicinal plants are non-toxic and much safer than synthetic drugs because regular use of synthetic drugs shows long-term side effects. Curcuma amada (Roxb) is a medicinal plant used in Ayurveda and Unani medicinal systems in India. The goal of this study is to rummage the potential efficiency of the most potent solvent fraction of effective extract of hydro-methanol 60:40 of C. amada rhizome on male gonadal hypofunction in streptozotocin-induced diabetic rat. Diabetes-induced testicular hypofunction was evaluated by glycemic, spermiological, biochemical, genomic, flow cytometric, and histology of testicular tissue. The n-hexane, chloroform, ethyl-acetate, and n-butanol solvent fractions of the said extract were administrated for 4 weeks at 10 mg dose/100 g body weight/day. Among all the used fractions, the ethyl-acetate solvent fraction-treated group showed maximum recovery in serum insulin (177.42%), sperm count (92.84%), sperm motility (97.15%), and serum testosterone (164.33%). The diabetic rats treated with ethyl-acetate solvent fraction also exhibited the maximum resettlement in flow cytometric analysis of sperm viability (55.84%) and sperm mitochondrial integrity (149.79%), gene expression patterns of key markers for androgenesis (Δ5, 3ß-HSD 87.50%, and 17ß-HSD 74.66%) and apoptosis (Bax 44.63%, Bcl-2 54.03%, and Caspase-3 35.77%) along with testicular histology. The ethyl-acetate fraction contains alkaloids, flavonoids, and polyphenols where all of these components are not present in other fractions, may be the most effective cause for the recovery of diabetes-linked oxidative stress-mediated testicular hypofunctions. PRACTICAL APPLICATIONS: Nowadays worldwide, the use of synthetic drugs are reduced due to their toxic effect. At present, synthetic drugs are replaced by several herbal drugs, the natural source of medicine which has many therapeutic values. C. amada has strong antioxidant activity due to the presence of bio-active compound(s) that can able to manage streptozotocin-induced diabetes linked to oxidative damage of male gonadal organs. Therefore, these bio-active compound(s)-containing said medicinal plant may use as a good source of antioxidative food in the food industry as nutraceuticals and in pharmaceutical industries for the development of the herbal drug to manage diabetes-linked male gonadal hypofunctions. At present, WHO also gives emphasis for developing one drug-multi-disease therapy. From such a viewpoint, this active fraction-containing phytomolecules may have corrective efficacy against diabetes as well as oxidative stress-linked testicular complications.


Subject(s)
Diabetes Mellitus, Experimental , Infertility, Male , Insulins , Synthetic Drugs , 1-Butanol/analysis , 1-Butanol/pharmacology , 1-Butanol/therapeutic use , Acetates/pharmacology , Animals , Antioxidants/chemistry , Apoptosis , Caspase 3 , Chloroform/analysis , Chloroform/pharmacology , Chloroform/therapeutic use , Curcuma/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Flavonoids/analysis , Humans , Infertility, Male/complications , Infertility, Male/etiology , Insulins/analysis , Insulins/pharmacology , Insulins/therapeutic use , Male , Methanol , Plant Extracts/analysis , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rhizome/chemistry , Solvents/analysis , Solvents/pharmacology , Solvents/therapeutic use , Sperm Motility , Streptozocin , Synthetic Drugs/analysis , Synthetic Drugs/pharmacology , Synthetic Drugs/therapeutic use , Testosterone , bcl-2-Associated X Protein/genetics
5.
Pharm Res ; 39(3): 541-551, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35237922

ABSTRACT

PURPOSE: Intranasally administered unfractionated heparin (UFH) and other sulfated polysaccharides are potential prophylactics for COVID-19. The purpose of this research was to measure the safety and pharmacokinetics of clearance of intranasally administered UFH solution from the nasal cavity. METHODS: Double-blinded daily intranasal dosing in C57Bl6 mice with four doses (60 ng to 60 µg) of UFH was carried out for fourteen consecutive days, with both blood coagulation measurements and subject adverse event monitoring. The pharmacokinetics of fluorescent-labeled UFH clearance from the nasal cavity were measured in mice by in vivo imaging. Intranasal UFH at 2000 U/day solution with nasal spray device was tested for safety in a small number of healthy human subjects. RESULTS: UFH showed no evidence of toxicity in mice at any dose measured. No significant changes were observed in activated partial thromboplastin time (aPTT), platelet count, or frequency of minor irritant events over vehicle-only control. Human subjects showed no significant changes in aPTT time, international normalized ratio (INR), or platelet count over baseline measurements. No serious adverse events were observed. In vivo imaging in a mouse model showed a single phase clearance of UFH from the nasal cavity. After 12 h, 3.2% of the administered UFH remained in the nasal cavity, decaying to background levels by 48 h. CONCLUSIONS: UFH showed no toxic effects for extended daily intranasal dosing in mice as well as humans. The clearance kinetics of intranasal heparin solution from the nasal cavity indicates potentially protective levels for up to 12 h after dosing.


Subject(s)
COVID-19 , Heparin , Animals , Anticoagulants/adverse effects , Humans , Mice , Mice, Inbred C57BL , Partial Thromboplastin Time
6.
medRxiv ; 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35194614

ABSTRACT

PURPOSE: Intranasally administered unfractionated heparin (UFH) and other sulfated polysaccharides are potential prophylactics for COVID-19. The purpose of this research was to measure the safety and pharmacokinetics of clearance of intranasally administered UFH solution from the nasal cavity. METHODS: Double-blinded daily intranasal dosing in C57Bl6 mice with four doses (60 ng to 60 µg) of UFH was carried out for fourteen consecutive days, with both blood coagulation measurements and subject adverse event monitoring. The pharmacokinetics of fluorescent-labeled UFH clearance from the nasal cavity were measured in mice by in vivo imaging. Intranasal UFH at 2000 U/day solution with nasal spray device was tested for safety in a small number of healthy human subjects. RESULTS: UFH showed no evidence of toxicity in mice at any dose measured. No significant changes were observed in activated partial thromboplastin time (aPTT), platelet count, or frequency of minor irritant events over vehicle-only control. Human subjects showed no significant changes in aPTT time, international normalized ratio (INR), or platelet count over baseline measurements. No serious adverse events were observed. In vivo imaging in a mouse model showed a single phase clearance of UFH from the nasal cavity. After 12 hours, 3.2% of the administered UFH remained in the nasal cavity, decaying to background levels by 48 hours. CONCLUSIONS: UFH showed no toxic effects for extended daily intranasal dosing in mice as well as humans. The clearance kinetics of intranasal heparin solution from the nasal cavity indicates potentially protective levels for up to 12 hours after dosing.

7.
Viruses ; 13(11)2021 11 15.
Article in English | MEDLINE | ID: mdl-34835083

ABSTRACT

Human cytomegalovirus (HCMV) tegument protein pp150 is essential for the completion of the final steps in virion maturation. Earlier studies indicated that three pp150nt (N-terminal one-third of pp150) conformers cluster on each triplex (Tri1, Tri2A and Tri2B), and extend towards small capsid proteins atop nearby major capsid proteins, forming a net-like layer of tegument densities that enmesh and stabilize HCMV capsids. Based on this atomic detail, we designed several peptides targeting pp150nt. Our data show significant reduction in virus growth upon treatment with one of these peptides (pep-CR2) with an IC50 of 1.33 µM and no significant impact on cell viability. Based on 3D modeling, pep-CR2 specifically interferes with the pp150-capsid binding interface. Cells pre-treated with pep-CR2 and infected with HCMV sequester pp150 in the nucleus, indicating a mechanistic disruption of pp150 loading onto capsids and subsequent nuclear egress. Furthermore, pep-CR2 effectively inhibits mouse cytomegalovirus (MCMV) infection in cell culture, paving the way for future animal testing. Combined, these results indicate that CR2 of pp150 is amenable to targeting by a peptide inhibitor, and can be developed into an effective antiviral.


Subject(s)
Capsid Proteins/ultrastructure , Phosphoproteins/metabolism , Phosphoproteins/physiology , Viral Matrix Proteins/metabolism , Viral Matrix Proteins/physiology , Animals , Capsid , Capsid Proteins/metabolism , Cryoelectron Microscopy/methods , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/metabolism , Humans , Mice , Muromegalovirus/metabolism , Muromegalovirus/pathogenicity , Phosphoproteins/ultrastructure , Viral Matrix Proteins/ultrastructure , Virion , Virus Assembly
8.
PLoS Pathog ; 17(8): e1009803, 2021 08.
Article in English | MEDLINE | ID: mdl-34352038

ABSTRACT

Several enveloped viruses, including herpesviruses attach to host cells by initially interacting with cell surface heparan sulfate (HS) proteoglycans followed by specific coreceptor engagement which culminates in virus-host membrane fusion and virus entry. Interfering with HS-herpesvirus interactions has long been known to result in significant reduction in virus infectivity indicating that HS play important roles in initiating virus entry. In this study, we provide a series of evidence to prove that specific sulfations as well as the degree of polymerization (dp) of HS govern human cytomegalovirus (CMV) binding and infection. First, purified CMV extracellular virions preferentially bind to sulfated longer chain HS on a glycoarray compared to a variety of unsulfated glycosaminoglycans including unsulfated shorter chain HS. Second, the fraction of glycosaminoglycans (GAG) displaying higher dp and sulfation has a larger impact on CMV titers compared to other fractions. Third, cell lines deficient in specific glucosaminyl sulfotransferases produce significantly reduced CMV titers compared to wild-type cells and virus entry is compromised in these mutant cells. Finally, purified glycoprotein B shows strong binding to heparin, and desulfated heparin analogs compete poorly with heparin for gB binding. Taken together, these results highlight the significance of HS chain length and sulfation patterns in CMV attachment and infectivity.


Subject(s)
Cell Membrane/metabolism , Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Glycosaminoglycans/chemistry , Heparitin Sulfate/chemistry , Polymerization , Virus Internalization , Animals , Cell Membrane/virology , Cytomegalovirus Infections/metabolism , Fibroblasts/metabolism , Fibroblasts/virology , Glycosaminoglycans/metabolism , Heparitin Sulfate/metabolism , Humans , Mice , Virion
9.
Nanoscale Adv ; 3(6): 1588-1596, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-34381960

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease that began in 2019 (COVID-19), has been responsible for 1.4 million deaths worldwide as of 13 November 2020. Because at the time of writing no vaccine is yet available, a rapid diagnostic assay is very urgently needed. Herein, we present the development of anti-spike antibody attached gold nanoparticles for the rapid diagnosis of specific COVID-19 viral antigen or virus via a simple colorimetric change observation within a 5 minute time period. For rapid and highly sensitive identification, surface enhanced Raman spectroscopy (SERS) was employed using 4-aminothiophenol as a reporter molecule, which is attached to the gold nanoparticle via an Au-S bond. In the presence of COVID-19 antigen or virus particles, owing to the antigen-antibody interaction, the gold nanoparticles undergo aggregation, changing color from pink to blue, which allows for the determination of the presence of antigen or virus very rapidly by the naked eye, even at concentrations of 1 nanogram (ng) per mL for COVID-19 antigen and 1000 virus particles per mL for SARS-CoV-2 spike protein pseudotyped baculovirus. Importantly, the aggregated gold nanoparticles form "hot spots" to provide very strong SERS signal enhancement from anti-spike antibody and 4-aminothiophenol attached gold nanoparticles via light-matter interactions. Finite-difference time-domain (FDTD) simulation data indicate a 4-orders-of-magnitude Raman enhancement in "hot spot" positions when gold nanoparticles form aggregates. Using a portable Raman analyzer, our reported data demonstrate that our antibody and 4-aminothiophenol attached gold nanoparticle-based SERS probe has the capability to detect COVID-19 antigen even at a concentration of 4 picograms (pg) per mL and virus at a concentration of 18 virus particles per mL within a 5 minute time period. Using HEK293T cells, which express angiotensin-converting enzyme 2 (ACE2), by which SARS-CoV-2 enters human cells, we show that anti-spike antibody attached gold nanoparticles have the capability to inhibit infection by the virus. Our reported data show that antibody attached gold nanoparticles bind to SARS-CoV-2 spike protein, thereby inhibiting the virus from binding to cell receptors, which stops virus infection and spread. It also has the capability to destroy the lipid membrane of the virus.

10.
Carbohydr Polym ; 260: 117797, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33712145

ABSTRACT

Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has resulted in a pandemic and continues to spread at an unprecedented rate around the world. Although a vaccine has recently been approved, there are currently few effective therapeutics to fight its associated disease in humans, COVID-19. SARS-CoV-2 and the related severe acute respiratory syndrome (SARS-CoV-1), and Middle East respiratory syndrome (MERS-CoV) result from zoonotic respiratory viruses that have bats as the primary host and an as yet unknown secondary host. While each of these viruses has different protein-based cell-surface receptors, each rely on the glycosaminoglycan, heparan sulfate as a co-receptor. In this study we compare, for the first time, differences and similarities in the structure of heparan sulfate in human and bat lungs. Furthermore, we show that the spike glycoprotein of COVID-19 binds 3.5 times stronger to human lung heparan sulfate than bat lung heparan sulfate.


Subject(s)
Heparitin Sulfate/metabolism , Lung/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Animals , Chiroptera , Female , Heparitin Sulfate/chemistry , Heparitin Sulfate/isolation & purification , Humans , Male , Molecular Structure , Molecular Weight , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/isolation & purification
11.
J Phys Chem Lett ; 12(8): 2166-2171, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33629859

ABSTRACT

The ongoing outbreak of the coronavirus infection has killed more than 2 million people. Herein, we demonstrate that Rhodamine 6G (Rh-6G) dye conjugated DNA aptamer-attached gold nanostar (GNS)-based distance-dependent nanoparticle surface energy transfer (NSET) spectroscopy has the capability of rapid diagnosis of specific SARS-CoV-2 spike recombinant antigen or SARS-CoV-2 spike protein pseudotyped baculovirus within 10 min. Because Rh-6G-attached single-stand DNA aptamer wrapped the GNS, 99% dye fluorescence was quenched because of the NSET process. In the presence of spike antigen or virus, the fluorescence signal persists because of the aptamer-spike protein binding. Specifically, the limit of detection for the NSET assay has been determined to be 130 fg/mL for antigen and 8 particles/mL for virus. Finally, we have demonstrated that DNA aptamer-attached GNSs can stop virus infection by blocking the angiotensin-converting enzyme 2 (ACE2) receptor binding capability and destroying the lipid membrane of the virus.


Subject(s)
Antigens, Viral/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , COVID-19/diagnosis , Gold/chemistry , Metal Nanoparticles/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/analysis , Angiotensin-Converting Enzyme 2/metabolism , Antigens, Viral/metabolism , Aptamers, Nucleotide/metabolism , COVID-19 Testing/methods , Energy Transfer , Humans , Limit of Detection , Protein Binding , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism
12.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: mdl-33173010

ABSTRACT

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic, or prophylactic. As with other betacoronaviruses, attachment and entry of SARS-CoV-2 are mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin-converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third-generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in antiviral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6-O-desulfated UFH, and 6-O-desulfated enoxaparin with 50% inhibitory concentrations (IC50s) of 5.99 µg/liter, 1.08 mg/liter, 1.77 µg/liter, and 5.86 mg/liter, respectively. In summary, several sulfated polysaccharides show potent anti-SARS-CoV-2 activity and can be developed for prophylactic as well as therapeutic purposes.IMPORTANCE The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in Wuhan, China, in late 2019 and its subsequent spread to the rest of the world has created a pandemic situation unprecedented in modern history. While ACE2 has been identified as the viral receptor, cellular polysaccharides have also been implicated in virus entry. The SARS-CoV-2 spike glycoprotein (SGP) binds to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we report structure-based differences in antiviral activity and affinity to SGP for several sulfated polysaccharides, including both well-characterized FDA-approved drugs and novel marine sulfated polysaccharides, which can be developed for prophylactic as well as therapeutic purposes.


Subject(s)
Antiviral Agents/pharmacology , Heparin/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Drug Evaluation, Preclinical , Enoxaparin/chemistry , Enoxaparin/metabolism , Enoxaparin/pharmacology , Genetic Vectors/genetics , HEK293 Cells , Heparin/chemistry , Heparin/metabolism , Heparitin Sulfate/metabolism , Humans , Inhibitory Concentration 50 , Lentivirus/genetics , Molecular Structure , Molecular Weight , Polysaccharides/chemistry , Polysaccharides/metabolism , Polysaccharides/pharmacology , Protein Binding , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Transduction, Genetic , Virus Attachment/drug effects
13.
Sci Rep ; 10(1): 19076, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33154514

ABSTRACT

Pseuodotyped particles have significant importance and use in virology as tools for studying the biology of highly pathogenic viruses in a lower biosafety environment. The biological, chemical, and serological studies of the recently emerged SARS-CoV-2 will be greatly aided by the development and optimization of a suitable pseudotyping system. Here, we pseudotyped the SARS-CoV-2 Spike glycoprotein (SPG) on a traditional retroviral (MMLV) as well as a third generation lentiviral (pLV) vector and tested the transduction efficiency in several mammalian cell lines expressing SARS-CoV-2 receptor hACE2. While MMLV pseudotyped the vesicular stomatitis virus G glycoprotein (VSV-G) efficiently, it could not pseudotype the full-length SPG. In contrast, pLV pseudotyped both glycoproteins efficiently; however, much higher titers of pLV-G particles were produced. Among all the tested mammalian cells, 293Ts expressing hACE2 were most efficiently transduced using the pLV-S system. The pLV-S particles were efficiently neutralized by diluted serum (>:640) from recently recovered COVID-19 patients who showed high SARS-CoV-2 specific IgM and IgG levels. In summary, pLV-S pseudotyped virus provides a valid screening tool for the presence of anti SARS-CoV-2 specific neutralizing antibodies in convalescent patient serum.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Lentivirus/genetics , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Genetic Vectors/genetics , Humans , SARS-CoV-2 , Transduction, Genetic
14.
Int J Biol Macromol ; 163: 1649-1658, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32979436

ABSTRACT

The SARS-CoV-2 spike glycoproteins (SGPs) and human angiotensin converting enzyme 2 (ACE2) are the two key targets for the prevention and treatment of COVID-19. Host cell surface heparan sulfate (HS) is believed to interact with SARS-CoV-2 SGPs to facilitate host cell entry. In the current study, a series of polysaccharides from Saccharina japonica were prepared to investigate the structure-activity relationship on the binding abilities of polysaccharides (oligosaccharides) to pseudotype particles, including SARS-CoV-2 SGPs, and ACE2 using surface plasmon resonance. Sulfated galactofucan (SJ-D-S-H) and glucuronomannan (Gn) displayed strongly inhibited interaction between SARS-CoV-2 SGPs and heparin while showing negligible inhibition of the interaction between SARS-CoV-2 SGPs and ACE2. The IC50 values of SJ-D-S-H and Gn in blocking heparin SGP binding were 27 and 231 nM, respectively. NMR analysis showed that the structure of SJ-D-S-H featured with a backbone of 1, 3-linked α-L-Fucp residues sulfated at C4 and C2/C4 and 1, 3-linked α-L-Fucp residues sulfated at C4 and branched with 1, 6-linked ß-D-galacto-biose; Gn had a backbone of alternating 1, 4-linked ß-D-GlcAp residues and 1, 2-linked α-D-Manp residues. The sulfated galactofucan and glucuronomannan showed strong binding ability to SARS-CoV-2 SGPs, suggesting that these polysaccharides might be good candidates for preventing and/or treating SARS-CoV-2.


Subject(s)
Coronavirus Infections/virology , Glucuronates/metabolism , Mannose/analogs & derivatives , Pneumonia, Viral/virology , Polysaccharides/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Betacoronavirus/chemistry , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Glucuronates/chemistry , Heparin/chemistry , Heparin/metabolism , Humans , Mannose/chemistry , Mannose/metabolism , Oligosaccharides/chemistry , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phaeophyceae/chemistry , Polysaccharides/chemistry , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Structure-Activity Relationship
15.
bioRxiv ; 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32577638

ABSTRACT

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic or prophylactic. Like other betacoronaviruses, attachment and entry of SARS-CoV-2 is mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in anti-viral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6-O-desulfated UFH and 6-O-desulfated enoxaparin with an IC50 of 5.99 µg/L, 1.08 mg/L, 1.77 µg/L, and 5.86 mg/L respectively. The low serum bioavailability of intranasally administered UFH, along with data suggesting that the nasal epithelium is a portal for initial infection and transmission, suggest that intranasal administration of UFH may be an effective and safe prophylactic treatment.

16.
J Food Biochem ; 44(3): e13154, 2020 03.
Article in English | MEDLINE | ID: mdl-31970789

ABSTRACT

All over the world, the prevalence of diabetes mellitus is increasing. The main goal of this experiment was to identify the most effective fraction of aqueous-methanol extract of Curcuma amada rhizome for its antidiabetic and antioxidative properties. The fractions (n-hexane or chloroform or ethyl-acetate or n-butanol) of aqueous-methanol extract were administered to the streptozotocin-induced diabetic groups at a dose of 10 mg/100 g body weight/day for 4 weeks. The antidiabetic and antioxidative efficacies of the fractions on glycemic, enzymatic, genomic, and histological sensors and pancreatic ß-cells population and general toxicity were assessed. After the fraction treatment, out of the fraction used, the significant recovery in most sensors was noted at the ethyl-acetate fraction in glycemic, enzymatic, genomic, ß cells population, diameter of the pancreatic islet and toxicity level. In conclusion, it may be stated that the ethyl-acetate fraction of C. amada was the most effective solvent in this study. PRACTICAL APPLICATIONS: The ethyl-acetate fraction of aqueous-methanol extract of Curcuma amada has antidiabetic property, it gives a clue to the herbal medicine manufacturing company to produce phytotherapeutic drugs to cure the complication related to diabetes.


Subject(s)
Curcuma , Diabetes Mellitus , Animals , Antioxidants , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Rhizome , Solvents
17.
RSC Adv ; 10(50): 30223-30237, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-35518245

ABSTRACT

Electrophilic fluorine-mediated dearomative spirocyclization has been developed to synthesize a range of fluoro-substituted spiro-isoxazoline ethers and lactones. The in vitro biological assays of synthesized compounds were probed for anti-viral activity against human cytomegalovirus (HCMV) and cytotoxicity against glioblastomas (GBM6) and triple negative breast cancer (MDA MB 231). Interestingly, compounds 4d and 4n showed significant activity against HCMV (IC50 ∼ 10 µM), while 4l and 5f revealed the highest cytotoxicity with IC50 = 36 to 80 µM. The synthetic efficacy and biological relevance offer an opportunity to further drug-discovery development of fluoro-spiro-isoxazolines as novel anti-viral and anti-cancer agents.

18.
J Complement Integr Med ; 16(4)2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31318692

ABSTRACT

Background Curcuma amada is the most popular traditional medicine in India for the treatment of diabetes. The present study aimed to focus the antidiabetic and antioxidative activity of C. amada through the analysis of biochemical and genomic levels in a dose-dependent manner in streptozotocin-induced male adult rat. Method Streptozotocin-induced diabetic rats were administered orally with hydro-methanolic extract of C. amada at the dose of 10, 20, 40 and 80 mg/100 g body weight of rats for 28 days. The antidiabetic and antioxidative efficacy of the extract on glycemic, enzymatic, genomic and histological sensors along with toxicity study was investigated. Results The result showed a significant antidiabetic and antioxidative effect of the extract at dose-dependent manner. The significant recovery of fasting blood glucose level, serum insulin, activity of carbohydrate metabolic enzymes and antioxidative enzymes in extract-treated diabetic group as compared to untreated diabetic group were noted. After the extract treatment, the size of pancreatic islet and cell population densities were significantly increased. Activities of glutamate oxaloacetate transaminase and glutamate pyruvate transaminase in liver were significantly recovered along with the correction of Bax and Bcl-2 gene expression in hepatic tissue after the extract treatment in diabetic rats in respect to untreated diabetic group. Out of all the doses, the significant effects were noted at the dose of 20 mg/100 g body weight which has been considered as threshold dose in the concern. Conclusion It may be concluded that the significant and corrective effect in most of the sensors was noted at the minimum dose of 20 mg/100 g body weight of hydro-methanolic extract of C. amada without producing any toxicity.


Subject(s)
Antioxidants/pharmacology , Curcuma/chemistry , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Animals , Dose-Response Relationship, Drug , Genes, bcl-2 , Hexokinase/blood , Insulin/blood , Lipid Peroxidation , Male , Rats , Rats, Wistar , Rhizome/chemistry , bcl-2-Associated X Protein/genetics
19.
J Indian Assoc Pediatr Surg ; 24(3): 197-202, 2019.
Article in English | MEDLINE | ID: mdl-31258270

ABSTRACT

OBJECTIVE: Empyema thoracis (ET) in children is a disease of significant morbidity and mortality. In the event of failure to resolute following intercostal chest tube drainage (ICD), thoracotomy decortication (TDC) remains the treatment of choice. We have reviewed the outcome of management of 96 cases of ET with the intent to establish the scope of ICD as primary form of the management. MATERIALS AND METHODS: This is a retrospective study of 96 patients of ET who were managed in pediatric surgery department over a period of 5 years (April 2013 - March 2018). Ninety-six patients at a single center met inclusion criteria for having ET and underwent ICD. We excluded the cases where video-assisted thoracoscopic surgery was provided as primary treatment. The patients were categorized into complicated and uncomplicated groups. Those with pyopneumothorax, encysted empyema, multiloculated empyema, and bilateral ET were assigned as complicated group. There were two treatment groups: (I) those responded with ICD alone (II) those with ICD followed by TDC. RESULTS: All 96 cases received ICD as primary management. There were 54 uncomplicated cases and 42 complicated cases. Out of 42 complicated cases, 26 patients recovered with ICD alone and 16 patients needed TDC. A total of 80 (83.33%) patients (54 uncomplicated ± 26 complicated) recovered with ICD alone. Significant complications were encountered in follow-up of patients who underwent delayed thoracotomy in the form of overriding of the ribs (n = 3) and postoperative air leak (n = 4). There was no mortality in our series. CONCLUSION: Early initiation of management of ET with intercostal tube drainage is simple, safe, effective even in complicated cases, and has less complications. Thoracotomy with decortication should be reserved for ICD failure cases.

20.
J Org Chem ; 84(11): 6992-7006, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31066280

ABSTRACT

The association between glioblastoma (GBM) and human cytomegalovirus (HCMV) infection has been the intensely debated topic over the decades for developing new therapeutic options. In this regard, the peroxides from natural and synthetic sources served as potential antiviral and anticancer agents in the past. Herein, a concise and efficient strategy has been demonstrated to access a novel class of peroxides containing a spiro-isoxazoline to primarily investigate the biological activities. The synthetic compounds were evaluated for in vitro antiviral and antiproliferative activity against HCMV and glioblastoma cell line (GBM6), respectively. While compound 13m showed moderate anti-CMV activity (IC50 = 19 µM), surprisingly, an independent biological assay for compound 13m revealed its antiproliferative activity against the human glioblastoma cell line (GBM6) with an IC50 of 10 µM. Hence, the unification of an isoxazoline and peroxide heterocycles could be a potential direction to initiate the HCMV-GBM drug discovery program.


Subject(s)
Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Brain Neoplasms/drug therapy , Cytomegalovirus/drug effects , Drug Design , Glioblastoma/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Brain Neoplasms/pathology , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Glioblastoma/pathology , Humans , Isoxazoles/chemistry , Isoxazoles/pharmacology , Microbial Sensitivity Tests , Molecular Structure , Peroxides/chemistry , Peroxides/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...