Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 36(10): 3177-3184, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32049328

ABSTRACT

MOTIVATION: Recent work has demonstrated the feasibility of using non-numerical, qualitative data to parameterize mathematical models. However, uncertainty quantification (UQ) of such parameterized models has remained challenging because of a lack of a statistical interpretation of the objective functions used in optimization. RESULTS: We formulated likelihood functions suitable for performing Bayesian UQ using qualitative observations of underlying continuous variables or a combination of qualitative and quantitative data. To demonstrate the resulting UQ capabilities, we analyzed a published model for immunoglobulin E (IgE) receptor signaling using synthetic qualitative and quantitative datasets. Remarkably, estimates of parameter values derived from the qualitative data were nearly as consistent with the assumed ground-truth parameter values as estimates derived from the lower throughput quantitative data. These results provide further motivation for leveraging qualitative data in biological modeling. AVAILABILITY AND IMPLEMENTATION: The likelihood functions presented here are implemented in a new release of PyBioNetFit, an open-source application for analyzing Systems Biology Markup Language- and BioNetGen Language-formatted models, available online at www.github.com/lanl/PyBNF. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Systems Biology , Bayes Theorem , Likelihood Functions , Uncertainty
2.
Mol Biol Cell ; 31(7): 695-708, 2020 03 19.
Article in English | MEDLINE | ID: mdl-31913761

ABSTRACT

Differential epidermal growth factor receptor (EGFR) phosphorylation is thought to couple receptor activation to distinct signaling pathways. However, the molecular mechanisms responsible for biased signaling are unresolved due to a lack of insight into the phosphorylation patterns of full-length EGFR. We extended a single-molecule pull-down technique previously used to study protein-protein interactions to allow for robust measurement of receptor phosphorylation. We found that EGFR is predominantly phosphorylated at multiple sites, yet phosphorylation at specific tyrosines is variable and only a subset of receptors share phosphorylation at the same site, even with saturating ligand concentrations. We found distinct populations of receptors as soon as 1 min after ligand stimulation, indicating early diversification of function. To understand this heterogeneity, we developed a mathematical model. The model predicted that variations in phosphorylation are dependent on the abundances of signaling partners, while phosphorylation levels are dependent on dimer lifetimes. The predictions were confirmed in studies of cell lines with different expression levels of signaling partners, and in experiments comparing low- and high-affinity ligands and oncogenic EGFR mutants. These results reveal how ligand-regulated receptor dimerization dynamics and adaptor protein concentrations play critical roles in EGFR signaling.


Subject(s)
ErbB Receptors/metabolism , GRB2 Adaptor Protein/metabolism , Protein Multimerization , Adaptor Proteins, Signal Transducing/metabolism , Animals , CHO Cells , Cricetulus , ErbB Receptors/genetics , Kinetics , Models, Biological , Mutation/genetics , Phosphorylation , Phosphotyrosine/metabolism , Single Molecule Imaging
3.
iScience ; 19: 1012-1036, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31522114

ABSTRACT

In systems biology modeling, important steps include model parameterization, uncertainty quantification, and evaluation of agreement with experimental observations. To help modelers perform these steps, we developed the software PyBioNetFit, which in addition supports checking models against known system properties and solving design problems. PyBioNetFit introduces Biological Property Specification Language (BPSL) for the formal declaration of system properties. BPSL allows qualitative data to be used alone or in combination with quantitative data. PyBioNetFit performs parameterization with parallelized metaheuristic optimization algorithms that work directly with existing model definition standards: BioNetGen Language (BNGL) and Systems Biology Markup Language (SBML). We demonstrate PyBioNetFit's capabilities by solving various example problems, including the challenging problem of parameterizing a 153-parameter model of cell cycle control in yeast based on both quantitative and qualitative data. We demonstrate the model checking and design applications of PyBioNetFit and BPSL by analyzing a model of targeted drug interventions in autophagy signaling.

4.
Methods Mol Biol ; 1945: 391-419, 2019.
Article in English | MEDLINE | ID: mdl-30945257

ABSTRACT

BioNetFit is a software tool designed for solving parameter identification problems that arise in the development of rule-based models. It solves these problems through curve fitting (i.e., nonlinear regression). BioNetFit is compatible with deterministic and stochastic simulators that accept BioNetGen language (BNGL)-formatted files as inputs, such as those available within the BioNetGen framework. BioNetFit can be used on a laptop or stand-alone multicore workstation as well as on many Linux clusters, such as those that use the Slurm Workload Manager to schedule jobs. BioNetFit implements a metaheuristic population-based global optimization procedure, an evolutionary algorithm (EA), to minimize a user-defined objective function, such as a residual sum of squares (RSS) function. BioNetFit also implements a bootstrapping procedure for determining confidence intervals for parameter estimates. Here, we provide step-by-step instructions for using BioNetFit to estimate the values of parameters of a BNGL-encoded model and to define bootstrap confidence intervals. The process entails the use of several plain-text files, which are processed by BioNetFit and BioNetGen. In general, these files include (1) one or more EXP files, which each contains (experimental) data to be used in parameter identification/bootstrapping; (2) a BNGL file containing a model section, which defines a (rule-based) model, and an actions section, which defines simulation protocols that generate GDAT and/or SCAN files with model predictions corresponding to the data in the EXP file(s); and (3) a CONF file that configures the fitting/bootstrapping job and that defines algorithmic parameter settings.


Subject(s)
Computational Biology/methods , Models, Biological , Software , Systems Biology/methods , Algorithms , Computer Simulation
5.
Bull Math Biol ; 81(8): 2822-2848, 2019 08.
Article in English | MEDLINE | ID: mdl-29594824

ABSTRACT

Gillespie's direct method for stochastic simulation of chemical kinetics is a staple of computational systems biology research. However, the algorithm requires explicit enumeration of all reactions and all chemical species that may arise in the system. In many cases, this is not feasible due to the combinatorial explosion of reactions and species in biological networks. Rule-based modeling frameworks provide a way to exactly represent networks containing such combinatorial complexity, and generalizations of Gillespie's direct method have been developed as simulation engines for rule-based modeling languages. Here, we provide both a high-level description of the algorithms underlying the simulation engines, termed network-free simulation algorithms, and how they have been applied in systems biology research. We also define a generic rule-based modeling framework and describe a number of technical details required for adapting Gillespie's direct method for network-free simulation. Finally, we briefly discuss potential avenues for advancing network-free simulation and the role they continue to play in modeling dynamical systems in biology.


Subject(s)
Algorithms , Computer Simulation , Systems Biology/methods , Biochemical Phenomena , Kinetics , Mathematical Concepts , Metabolic Networks and Pathways , Models, Biological , Monte Carlo Method , Stochastic Processes , Terminology as Topic
6.
Curr Opin Syst Biol ; 18: 9-18, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32719822

ABSTRACT

Mathematical models can provide quantitative insights into immunoreceptor signaling, and other biological processes, but require parameterization and uncertainty quantification before reliable predictions become possible. We review currently available methods and software tools to address these problems. We consider gradient-based and gradient-free methods for point estimation of parameter values, and methods of profile likelihood, bootstrapping, and Bayesian inference for uncertainty quantification. We consider recent and potential future applications of these methods to systems-level modeling of immune-related phenomena.

7.
Nat Commun ; 9(1): 3901, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30254246

ABSTRACT

In systems biology, qualitative data are often generated, but rarely used to parameterize models. We demonstrate an approach in which qualitative and quantitative data can be combined for parameter identification. In this approach, qualitative data are converted into inequality constraints imposed on the outputs of the model. These inequalities are used along with quantitative data points to construct a single scalar objective function that accounts for both datasets. To illustrate the approach, we estimate parameters for a simple model describing Raf activation. We then apply the technique to a more elaborate model characterizing cell cycle regulation in yeast. We incorporate both quantitative time courses (561 data points) and qualitative phenotypes of 119 mutant yeast strains (1647 inequalities) to perform automated identification of 153 model parameters. We quantify parameter uncertainty using a profile likelihood approach. Our results indicate the value of combining qualitative and quantitative data to parameterize systems biology models.


Subject(s)
Algorithms , Biomedical Research/methods , Models, Biological , Systems Biology/methods , Animals , Biomedical Research/statistics & numerical data , Cell Cycle/genetics , Cell Cycle/physiology , Humans , Kinetics , Mutation , Phenotype , Saccharomycetales/genetics , Saccharomycetales/metabolism , Systems Biology/statistics & numerical data , raf Kinases/antagonists & inhibitors , raf Kinases/metabolism
8.
J Phys Chem B ; 122(13): 3500-3513, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29432021

ABSTRACT

Lipid phase heterogeneity in the plasma membrane is thought to be crucial for many aspects of cell signaling, but the physical basis of participating membrane domains such as "lipid rafts" remains controversial. Here we consider a lattice model yielding a phase diagram that includes several states proposed to be relevant for the cell membrane, including microemulsion-which can be related to membrane curvature-and Ising critical behavior. Using a neural-network-based machine learning approach, we compute the full phase diagram of this lattice model. We analyze selected regions of this phase diagram in the context of a signaling initiation event in mast cells: recruitment of the membrane-anchored tyrosine kinase Lyn to a cluster of transmembrane IgE-FcεRI receptors. We find that model membrane systems in microemulsion and Ising critical states can mediate roughly equal levels of kinase recruitment (binding energy ∼ -0.6 kB T), whereas a membrane near a tricritical point can mediate a much stronger kinase recruitment (-1.7 kB T). By comparing several models for lipid heterogeneity within a single theoretical framework, this work points to testable differences between existing models. We also suggest the tricritical point as a new possibility for the basis of membrane domains that facilitate preferential partitioning of signaling components.


Subject(s)
Lipids/chemistry , Molecular Dynamics Simulation , Proteins/chemistry , Monte Carlo Method
9.
Sci Rep ; 7(1): 15586, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29138425

ABSTRACT

The high-affinity receptor for IgE expressed on the surface of mast cells and basophils interacts with antigens, via bound IgE antibody, and triggers secretion of inflammatory mediators that contribute to allergic reactions. To understand how past inputs (memory) influence future inflammatory responses in mast cells, a microfluidic device was used to precisely control exposure of cells to alternating stimulatory and non-stimulatory inputs. We determined that the response to subsequent stimulation depends on the interval of signaling quiescence. For shorter intervals of signaling quiescence, the second response is blunted relative to the first response, whereas longer intervals of quiescence induce an enhanced second response. Through an iterative process of computational modeling and experimental tests, we found that these memory-like phenomena arise from a confluence of rapid, short-lived positive signals driven by the protein tyrosine kinase Syk; slow, long-lived negative signals driven by the lipid phosphatase Ship1; and slower degradation of Ship1 co-factors. This work advances our understanding of mast cell signaling and represents a generalizable approach for investigating the dynamics of signaling systems.


Subject(s)
Inflammation/immunology , Mast Cells/immunology , Receptors, IgE/immunology , Signal Transduction/immunology , Animals , Antibodies/immunology , Antigens/immunology , Basophils/immunology , Humans , Inflammation/genetics , Inflammation/metabolism , Lab-On-A-Chip Devices , Mast Cells/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/immunology , Receptors, IgE/genetics , Signal Transduction/genetics , Syk Kinase/genetics , Syk Kinase/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...