Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38202355

ABSTRACT

A comparative karyotype analysis of four species of yellow-flowered Eranthis sect. Eranthis, i.e., E. bulgarica, E. cilicica, E. hyemalis, and E. longistipitata from different areas, has been carried out for the first time. All the studied specimens had somatic chromosome number 2n = 16 with basic chromosome number x = 8. Karyotypes of the investigated plants included five pairs of metacentric chromosomes and three pairs of submetacentric/subtelocentric chromosomes. The chromosome sets of the investigated species differ mainly in the ratio of submetacentric/subtelocentric chromosomes, their relative lengths, and arm ratios. A new oligonucleotide probe was developed and tested to detect 45S rDNA clusters. Using this probe and an oligonucleotide probe to 5S rDNA, 45S and 5S rDNA clusters were localized for the first time on chromosomes of E. cilicica, E. hyemalis, and E. longistipitata. Major 45S rDNA clusters were identified on satellite chromosomes in all the species; in E. cilicica, minor clusters were also identified in the terminal regions of one metacentric chromosome pair. The number and distribution of 5S rDNA clusters is more specific. In E. cilicica, two major clusters were identified in the pericentromeric region of a pair of metacentric chromosomes. Two major clusters in the pericentromeric region of a pair of submetacentric chromosomes and two major clusters in the interstitial region of a pair of metacentric chromosomes were observed in E. longistipitata. E. hyemalis has many clusters of different sizes, localized mainly in the pericentromeric regions. Summarizing new data on the karyotype structure of E. sect. Eranthis and previously obtained data on E. sect. Shibateranthis allowed conclusions to be formed about the clear interspecific karyological differences of the genus Eranthis.

2.
PhytoKeys ; 187: 207-227, 2021.
Article in English | MEDLINE | ID: mdl-35068976

ABSTRACT

Comparative karyomorphological analyses of six out of the eight white-flowered species of Eranthissect.Shibateranthis have been carried out. All studied specimens of E.byunsanensis, E.lobulata, E.pinnatifida, and E.stellata had a somatic chromosome number 2n = 16 with basic chromosome number x = 8. On the contrary, E.tanhoensis and E.sibirica had a basic chromosome number x = 7. The specimens of E.tanhoensis were diploid with 2n = 14, while the specimens of E.sibirica were polyploid with 2n = 42. Monoploid chromosome sets of the investigated diploid species had 4-5 metacentric chromosomes and 2-4 submetacentric/subtelocentric/acrocentric chromosomes. The highest level of interchromosomal asymmetry, estimated via CVCL, was found in E.byunsanensis and E.pinnatifida. The highest levels of intrachromosomal asymmetry (MCA) and heterogeneity in centromere position (CVCI) were found in E.lobulata and E.byunsanensis, while E.sibirica had the most symmetric karyotype. A multivariate PCoA analysis of basic karyotype parameters (2n, x, THL, CVCL, MCA, and CVCI) highlighted no overlap among species accessions, which was also confirmed by LDA. The average absolute monoploid DNA content (1Cx) of the 23 investigated samples of six Eranthis species varied from 9.26 ± 0.25 pg in E.sibirica to 15.93 ± 0.32 pg in E.stellata. Overall karyological affinity was highlighted between E.lobulata and E.stellata, on one side, and between E.byunsanensis and E.pinnatifida, on the other side. Interestingly, there was no significant correlation between total haploid (monoploid) chromosome length (THL) and 1Cx values in these species.

3.
PhytoKeys ; 140: 75-100, 2020.
Article in English | MEDLINE | ID: mdl-32194315

ABSTRACT

A new endemic species, Eranthis tanhoensis sp. nov., is described from the Republic of Buryatia and Irkutsk Province, Russia. It belongs to Eranthis section Shibateranthis and is morphologically similar to E. sibirica and E. stellata. An integrative taxonomic approach, based on cytogenetical, molecular and biochemical analyses, along with morphological data, was used to delimit this new species.

SELECTION OF CITATIONS
SEARCH DETAIL
...