Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(23): 15659-15665, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38819953

ABSTRACT

Molecular aggregation is a powerful tool for tuning advanced materials' photophysical and electronic properties. Here we present a novel potential for the aqueous-solvated aggregated state of boron dipyrromethene (BODIPY) to facilitate phototransformations otherwise achievable only under harsh chemical conditions. We show that the photoinduced symmetry-breaking charge separation state can itself initiate catalyst-free redox chemistry, leading to selective α-C(sp3)-H bond activation/Csp3-Csp3 coupling on the BODIPY backbone. The photoproduction progress was tracked by monitoring the evolution of the strong Stokes-shifted near-infrared emission, resulting from selective self-assembly of the terminal heterodimeric photoproduct into well-ordered J-aggregates, as revealed by X-ray structural analysis. These findings provide a facile and green route to further explore the promising frontier of packing-triggered selective photoconversions via supramolecular engineering.

2.
Molecules ; 29(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276601

ABSTRACT

The cytochrome P450 family consists of ubiquitous monooxygenases with the potential to perform a wide variety of catalytic applications. Among the members of this family, CYP116B5hd shows a very prominent resistance to peracid damage, a property that makes it a promising tool for fine chemical synthesis using the peroxide shunt. In this meticulous study, we use hyperfine spectroscopy with a multifrequency approach (X- and Q-band) to characterize in detail the electronic structure of the heme iron of CYP116B5hd in the resting state, which provides structural details about its active site. The hyperfine dipole-dipole interaction between the electron and proton nuclear spins allows for the locating of two different protons from the coordinated water and a beta proton from the cysteine axial ligand of heme iron with respect to the magnetic axes centered on the iron. Additionally, since new anti-cancer therapies target the inhibition of P450s, here we use the CYP116B5hd system-imidazole as a model for studying cytochrome P450 inhibition by an azo compound. The effects of the inhibition of protein by imidazole in the active-site geometry and electron spin distribution are presented. The binding of imidazole to CYP116B5hd results in an imidazole-nitrogen axial coordination and a low-spin heme FeIII. HYSCORE experiments were used to detect the hyperfine interactions. The combined interpretation of the gyromagnetic tensor and the hyperfine and quadrupole tensors of magnetic nuclei coupled to the iron electron spin allowed us to obtain a precise picture of the active-site geometry, including the orientation of the semi-occupied orbitals and magnetic axes, which coincide with the porphyrin N-Fe-N axes. The electronic structure of the iron does not seem to be affected by imidazole binding. Two different possible coordination geometries of the axial imidazole were observed. The angles between gx (coinciding with one of the N-Fe-N axes) and the projection of the imidazole plane on the heme were determined to be -60° and -25° for each of the two possibilities via measurement of the hyperfine structure of the axially coordinated 14N.


Subject(s)
Ferric Compounds , Heme , Heme/chemistry , Electron Spin Resonance Spectroscopy/methods , Ferric Compounds/chemistry , Protons , Iron/chemistry , Imidazoles/chemistry , Cytochrome P-450 Enzyme System
3.
J Phys Chem Lett ; 14(43): 9590-9595, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37862314

ABSTRACT

Encapsulated atomic hydrogen in cube-shaped octasilsesquioxane (POSS) cages of the Si8O12R8 type (where R is an organic group) is one of the simplest alternative stable systems to paramagnetic endofullerenes that have been regarded as key elements of spin-based quantum technologies. Apart from common sources of decoherence such as nuclear spin and spectral diffusion, all H@POSS species studied so far suffer from additional shortening of T2 at low temperatures due to methyl group rotations. Here we eliminate this factor for the first time by studying the smallest methyl-free derivative with R = H, namely, H@T8H8. By applying dynamical decoupling methods, we measure electron spin coherence times T2 up to 280 ± 76 µs at T = 90 K and observe a linear dependence of the decoherence rate 1/T2 on trapped hydrogen concentrations, which we attribute to the spin dephasing mechanism of instantaneous diffusion and a nonuniform spatial distribution of encapsulated H atoms.

4.
Sci Total Environ ; 892: 164218, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37211132

ABSTRACT

In the present study, the photocatalytic performance of exfoliated graphitic carbon nitride (g-C3N4) catalysts, with enhanced properties and response in UV and visible light irradiation, was evaluated for the removal of selected contaminants i.e., diuron, bisphenol A and ethyl paraben. Commercial TiO2 Degussa P25 was also used as a reference photocatalyst. The g-C3N4 catalysts demonstrated good photocatalytic activity which in some cases is comparable to TiO2 Degussa P25 leading to high removal percentages of the studied micropollutants under UV-A light irradiation. In contrast to TiO2 Degussa P25, g-C3N4 catalysts were also able to degrade the studied micropollutants under visible light irradiation. For all the studied g-C3N4 catalysts under both UV-A and visible light irradiation, the overall degradation rate decreases in the order of bisphenol A > diuron > ethyl paraben. Among the studied g-C3N4, the chemically exfoliated catalyst (g-C3N4-CHEM) showed superior photocatalytic activity under UV-A light irradiation due to its enhanced characteristics, such as pore volume and specific surface area and ~ 82.0 % in 6 min, ~75.7 % in 15 min and ~ 96.3 % in 40 min removals were achieved for BPA, DIU and EP, respectively. Under visible light irradiation, the thermally exfoliated catalyst (g-C3N4-THERM) demonstrated the best photocatalytic performance and the degradation ranged from ~29.5 to 59.4 % after 120 min. EPR data revealed that the three g-C3N4 semiconductors generate mainly O2•-, whereas TiO2 Degussa P25 generates both HO• and O2•-, the latter only under UV-A light irradiation. Nevertheless, the indirect formation of HO• in the case of g-C3N4 should also be considered. Hydroxylation, oxidation, dealkylation, dechlorination and ring opening were the main degradation pathways. The process proceeded without significant alterations in toxicity levels. Based on the results, heterogeneous photocatalysis using g-C3N4 catalysts is a promising method for the removal of organic micropollutants without the formation of harmful transformation products.


Subject(s)
Diuron , Light
5.
Chemistry ; 27(3): 971-983, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-32519773

ABSTRACT

We report a series of copper(II) artificial metallo-nucleases (AMNs) and demonstrate their DNA damaging properties and in-vitro cytotoxicity against human-derived pancreatic cancer cells. The compounds combine a tris-chelating polypyridyl ligand, di-(2-pycolyl)amine (DPA), and a DNA intercalating phenanthrene unit. Their general formula is Cu-DPA-N,N' (where N,N'=1,10-phenanthroline (Phen), dipyridoquinoxaline (DPQ) or dipyridophenazine (DPPZ)). Characterisation was achieved by X-ray crystallography and continuous-wave EPR (cw-EPR), hyperfine sublevel correlation (HYSCORE) and Davies electron-nuclear double resonance (ENDOR) spectroscopies. The presence of the DPA ligand enhances solution stability and facilitates enhanced DNA recognition with apparent binding constants (Kapp ) rising from 105 to 107 m-1 with increasing extent of planar phenanthrene. Cu-DPA-DPPZ, the complex with greatest DNA binding and intercalation effects, recognises the minor groove of guanine-cytosine (G-C) rich sequences. Oxidative DNA damage also occurs in the minor groove and can be inhibited by superoxide and hydroxyl radical trapping agents. The complexes, particularly Cu-DPA-DPPZ, display promising anticancer activity against human pancreatic tumour cells with in-vitro results surpassing the clinical platinum(II) drug oxaliplatin.


Subject(s)
Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , DNA/analysis , DNA/chemistry , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , DNA Damage/drug effects , Electron Spin Resonance Spectroscopy , Humans , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Pancreatic Neoplasms/genetics , Phenanthrolines/chemistry
6.
Phys Chem Chem Phys ; 22(27): 15751-15758, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32627777

ABSTRACT

The electron spin relaxation times of encapsulated atomic hydrogen in the vinyl derivative of silsesquioxane (R8Si8O12) cages (R = CH[double bond, length as m-dash]CH2) are studied in detail by pulse electron paramagnetic resonance (EPR) methods in the temperature range between 10 and 300 K. The temperature dependence of the spin-lattice relaxation time, T1, shows similar behaviour with previously studied derivatives that typically involve Raman and thermally activated processes. The room-temperature phase-memory time TM = 9 µs is comparable to those reported for different alkyl derivatives and exhibits a characteristic temperature dependence with a considerable reduction below 200 K as a result of dynamic effects like methyl group rotation. However, this reduction is modest for the vinyl derivative since the minimum observed TM = 5 µs is much longer than the value of 1 µs reported for methyl-containing derivatives like R = C2H5, C3H7 (n-propyl), or OSi(CH3)2H. This discrepancy is attributed to the different rotation dynamics of the vinyl group, as evidenced by the determined activation energy and rotation frequency.

7.
Inorg Chem ; 59(6): 3666-3676, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32077279

ABSTRACT

Strain effects on g and metal hyperfine coupling tensors, A, are often manifested in Electron Paramagnetic Resonance (EPR) spectra of transition metal complexes, as a result of their intrinsic and/or solvent-mediated structural variations. Although distributions of these tensors are quite common and well understood in continuous-wave (cw) EPR spectroscopy, reported strain effects on ligand hyperfine coupling constants are rather scarce. Here we explore the case of a conformationally flexible Cu(II) complex, [Cu{Ph2P(O)NP(O)Ph2-κ2O,O'}2], bearing P atoms in its second coordination sphere and exhibiting two structurally distinct CuO4 coordination spheres, namely a square planar and a tetrahedrally distorted one, as revealed by X-ray crystallography. The Hyperfine Sublevel Correlation (HYSCORE) spectra of this complex exhibit 31P correlation ridges that have unusual inverse or so-called "boomerang" shapes and features that cannot be reproduced by standard simulation procedures assuming only one set of magnetic parameters. Our work shows that a distribution of isotropic hyperfine coupling constants (hfc) spanning a range between negative and positive values is necessary in order to describe in detail the unusual shapes of HYSCORE spectra. By employing DFT calculations we show that these hfc correspond to molecules showing variable distortions from square planar to tetrahedral geometry, and we demonstrate that line shape analysis of such HYSCORE spectra provides new insight into the conformation-dependent spectroscopic response of the spin system under investigation.

8.
J Colloid Interface Sci ; 564: 371-380, 2020 Mar 22.
Article in English | MEDLINE | ID: mdl-31918204

ABSTRACT

Nanobubbles (ΝΒs) have attracted concentrated scientific attention due to their unique physicochemical properties and large number of potential applications. In this study, a novel nanobubble generator with low energy demand, operating continuously, is presented. Air and oxygen bulk nanobubbles (NBs@air and NBs@O2) with narrow size distribution and outstanding stability were prepared in water solution. The bulk NBs' behavior was evaluated taking into consideration the hydrodynamic diameter and ζ-potential as a function of processing time, gas type, pH value and NaCl concentration. According to the results the optimum processing time was 30 min, whereas the effect of water salinity was stronger in NBs@O2 than NBs@air. In order to investigate further the NBs properties, Electron Paramagnetic Resonance (EPR) spectroscopy was applied for quantitative analysis of free radicals following the spin trapping methodology. The mechanism of bulk NBs' generation and their extremely long-time stability can be attributed mainly to the hydrogen bonding interactions. The formation of a diffusion layer, by absorption of OH- due to electrostatic interaction, contributing to negative surface charge, whereas the interaction of ions with the surface hydroxylic groups provide the equilibrium between the protonation and deprotonation of water and finally the formation of a stable interface layer. A remarkable highlight of this work is the long-time stability of generated bulk NBs which is up to three months.

9.
Chemistry ; 25(1): 221-237, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30221802

ABSTRACT

The building of robust and versatile inorganic scaffolds with artificial metallo-nuclease (AMN) activity is an important goal for bioinorganic, biotechnology, and metallodrug research fields. Here, a new type of AMN combining a tris-(2-pyridylmethyl)amine (TPMA) scaffold with the copper(II) N,N'-phenanthrene chemical nuclease core is reported. In designing these complexes, the stabilization and flexibility of TPMA together with the prominent chemical nuclease activity of copper 1,10-phenanthroline (Phen) were targeted. A second aspect was the opportunity to introduce designer phenazine DNA intercalators (e.g., dipyridophenazine; DPPZ) for improved DNA recognition. Five compounds of formula [Cu(TPMA)(N,N')]2+ (where N,N' is 2,2-bipyridine (Bipy), Phen, 1,10-phenanthroline-5,6-dione (PD), dipyridoquinoxaline (DPQ), or dipyridophenazine (DPPZ)) were developed and characterized by X-ray crystallography. Solution stabilities were studied by continuous-wave EPR (cw-EPR), hyperfine sublevel correlation (HYSCORE), and Davies electron-nuclear double resonance (ENDOR) spectroscopies, which demonstrated preferred geometries in which phenanthrene ligands were coordinated to the copper(II) TPMA core. Complexes with Phen, DPQ, and DPPZ ligands possessed enhanced DNA binding activity, with DPQ and DPPZ compounds showing excellent intercalative effects. These complexes are effective AMNs and analysis with spin-trapping scavengers of reactive oxygen species and DNA repair enzymes with glycosylase/endonuclease activity demonstrated a distinctive DNA oxidation activity compared to classical Sigman- and Fenton-type reagents.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Phenanthrenes/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , Crystallography, X-Ray , DNA/chemistry , DNA/metabolism , DNA Damage , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/metabolism , Electron Spin Resonance Spectroscopy , Endonucleases/chemistry , Endonucleases/metabolism , Magnetic Resonance Spectroscopy , Molecular Conformation
10.
ACS Omega ; 3(11): 15952-15965, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30556020

ABSTRACT

The use of copper complexes for redox and oxidative-based mechanisms in therapeutic strategies is an important field of multidisciplinary research. Here, a novel Cu(II) complex [Cu(TPMA)(Phen)](ClO4)2 (Cu-TPMA-Phen, where TPMA = tris-(2-pyridylmethyl)amine and Phen = 1,10-phenanthroline) was studied using both the free and encapsulated forms. A hollow pH-sensitive drug-delivery system was synthesized, characterized, and used to encapsulate and release the copper complex, thus allowing for the comparison with the free drug. The human neuroblastoma-derived cell line NB100 was treated with 5 µM Cu-PMA-Phen for 24 h, pointing to the consequences on mono- and polyunsaturated fatty acids (MUFA and PUFA) present in the membrane lipidome, coupled with cell viability and death pathways (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium viability assay, flow cytometry, microscopy, caspase activation). In parallel, the Cu-TPMA-Phen reactivity with the fatty acid moieties of phospholipids was studied using the liposome model to work in a biomimetic environment. The main results concerned: (i) the membrane lipidome in treated cells, involving remodeling with a specific increase of saturated fatty acids (SFAs) and a decrease of MUFA, but not PUFA; (ii) cytotoxic events and lipidome changes did not occur for the encapsulated Cu-TPMA-Phen, showing the influence of such nanocarriers on drug activity; and (iii) the liposome behavior confirmed that MUFA and PUFA fatty acid moieties in membranes are not affected by oxidative and isomerization reactions, proving the different reactivities of thiyl radicals generated from amphiphilic and hydrophilic thiols and Cu-TPMA-Phen. This study gives preliminary but important elements of copper(II) complex reactivity in cellular and biomimetic models, pointing mainly to the effects on membrane reactivity and remodeling based on the balance between SFA and MUFA in cell membranes that are subjects of strong interest for chemotherapeutic activities as well as connected to nutritional strategies.

11.
ACS Omega ; 3(3): 3330-3339, 2018 Mar 31.
Article in English | MEDLINE | ID: mdl-31458588

ABSTRACT

Sulfur copolymers with high sulfur content find a broad range of applications from Li-S batteries to catalytic processes, self-healing materials, and the synthesis of nanoparticles. Synthesis of sulfur-containing polymers via the inverse vulcanization technique gained a lot of attention due to the feasibility of the reaction to produce copolymers with high sulfur content (up to 90 wt %). However, the interplay between the cross-linker and the structure of the copolymers has not yet been fully explored. In the present work, the effect of the amount of 1,3-diisopropenyl benzene (DIB) cross-linker on the structural stability of the copolymer was thoroughly investigated. Combining X-ray diffraction and differential scanning calorimetry, we demonstrated the partial depolymerization of sulfur in the copolymer containing low amount of cross-linker (<30 wt % DIB). On the other hand, by applying NMR and electron paramagnetic resonance techniques, we have shown that increasing the cross-linker content above 50 wt % leads to the formation of radicals, which may severely degrade the structural stability of the copolymer. Thus, an optimum amount of cross-linker is essential to obtain a stable copolymer. Moreover, we were able to detect the release of H2S gas during the cross-linking reaction as predicted based on the abstraction of hydrogen by the sulfur radicals and therefore we emphasize the need to take appropriate precautions while implementing the inverse vulcanization reaction.

12.
Dalton Trans ; 46(26): 8458-8475, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28627547

ABSTRACT

Nucleophilic attack by the carbanion -:CH2COCH3 at the carbonyl group of di-2-pyridyl ketone, (py)2CO, in the presence of CuII under moderately basic conditions has yielded the cationic mononuclear complex [Cu{(py)2C(CH2COCH3)(OH)}2](NO3)2·2H2O (1·2H2O) in ∼40% yield, where (py)2C(CH2COCH3)(OH) is the ligand bis(2-pyridine-2-yl)butane-1-ol-3-one. The CuII atom of the cation sits on a crystallographically imposed inversion center. The neutral molecule is coordinated to the metal ion as a tridentate fac chelating ligand through the hydroxyl oxygen atom and two 2-pyridyl nitrogen atoms. The pyridyl nitrogens are strongly coordinated to the metal ion, while the hydroxyl oxygen atoms form weak bonds with CuII. The coordination geometry at the CuII center is elongated octahedral. Various interactions build the crystal structure of the complex and Hirshfeld surface analysis was applied to evaluate the magnitude of interactions between the different chemical species in the crystal of 1·2H2O. IR, Raman and UV/VIS data of the solid complex are discussed in terms of the coordination mode of (py)2C(CH2COCH3)(OH), the ionic nature of nitrates and the stereochemistry at copper(ii). The complex was studied in a frozen solution (MeOH-toluene, 1 : 1 v/v) by CW-EPR spectroscopy and advanced EPR methods such as ENDOR and HYSCORE. The results show that the low symmetry of the cation is retained in solution, with the four nitrogen atoms arranged in a square planar configuration and the unpaired electron residing in an orbital pointing towards them. The bonding parameters in the first coordination sphere and the spin density distribution have been fully analyzed based on the ligand hyperfine coupling constants.

13.
J Magn Reson ; 254: 75-85, 2015 May.
Article in English | MEDLINE | ID: mdl-25838255

ABSTRACT

We present a new way to increase the modulation amplitude of electron spin echo envelope modulation (ESEEM) experiments that are based on electron spin coherence. The method uses a train of N refocusing π-pulses where each one of them redistributes the electron spin coherence among allowed and forbidden EPR transitions. This in turn leads to a significant enhancement of the ESEEM effect, depending on the strength of the hyperfine interaction and the number of applied pulses, N. We derive analytical expressions for a general two-dimensional (2D) scheme which is based on the refocused primary echo and we explore the expected modulation enhancement of various correlation peaks as a function of k (modulation depth parameter) and N. In addition, we inspect two different one-dimensional (1D) versions of the method, namely the Carr-Purcell-Meiboom-Gill (CPMG) sequence occurring for t1=t2, and an extension of the primary echo sequence occurring for t2=0. Our study shows that these methods are particularly useful for detecting weak hyperfine couplings of magnetic nuclei having small gn factors and low natural abundances like (13)C and (29)Si. The theoretically predicted features are confirmed by experiments in disordered spin systems.

14.
J Am Chem Soc ; 136(32): 11362-81, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25025754

ABSTRACT

A Cu(I) catalyst (1), supported by a framework of strongly basic guanidinato moieties, mediates nitrene-transfer from PhI═NR sources to a wide variety of aliphatic hydrocarbons (C-H amination or amidination in the presence of nitriles) and olefins (aziridination). Product profiles are consistent with a stepwise rather than concerted C-N bond formation. Mechanistic investigations with the aid of Hammett plots, kinetic isotope effects, labeled stereochemical probes, and radical traps and clocks allow us to conclude that carboradical intermediates play a major role and are generated by hydrogen-atom abstraction from substrate C-H bonds or initial nitrene-addition to one of the olefinic carbons. Subsequent processes include solvent-caged radical recombination to afford the major amination and aziridination products but also one-electron oxidation of diffusively free carboradicals to generate amidination products due to carbocation participation. Analyses of metal- and ligand-centered events by variable temperature electrospray mass spectrometry, cyclic voltammetry, and electron paramagnetic resonance spectroscopy, coupled with computational studies, indicate that an active, but still elusive, copper-nitrene (S = 1) intermediate initially abstracts a hydrogen atom from, or adds nitrene to, C-H and C═C bonds, respectively, followed by a spin flip and radical rebound to afford intra- and intermolecular C-N containing products.

15.
Phys Chem Chem Phys ; 16(6): 2378-83, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24352700

ABSTRACT

We study the electron spin decoherence of encapsulated atomic hydrogen in octasilsesquioxane cages induced by the (1)H and (29)Si nuclear spin bath. By applying the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence we significantly suppress the low-frequency noise due to nuclear spin flip-flops up to the point where a maximum T2 = 56 µs is observed. Moreover, dynamical decoupling with the CPMG sequence reveals the existence of two other sources of decoherence: first, a classical magnetic field noise imposed by the (1)H nuclear spins of the cage organic substituents, which can be described by a virtual fluctuating magnetic field with the proton Larmor frequency, and second, decoherence due to anisotropic hyperfine coupling between the electron and the inner (29)Si spins of the cage.

16.
Phys Chem Chem Phys ; 14(11): 3782-90, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22323086

ABSTRACT

Hydrogen atoms encapsulated in molecular cages are potential candidates for quantum computing applications. They provide the simplest two-spin system where the 1s electron spin, S = 1/2, is hyperfine-coupled to the proton nuclear spin, I = 1/2, with a large isotropic hyperfine coupling (A = 1420.40575 MHz for a free atom). While hydrogen atoms can be trapped in many matrices at cryogenic temperatures, it has been found that they are exceptionally stable in octasilsesquioxane cages even at room temperature [Sasamori et al., Science, 1994, 256, 1691]. Here we present a detailed spin-lattice and spin-spin relaxation study of atomic hydrogen encapsulated in Si(8)O(12)(OSiMe(2)H)(8) using X-band pulsed EPR spectroscopy. The spin-lattice relaxation times T(1) range between 1.2 s at 20 K and 41.8 µs at room temperature. The temperature dependence of the relaxation rate shows that for T < 60 K the spin-lattice relaxation is best described by a Raman process with a Debye temperature of θ(D) = 135 K, whereas for T > 100 K a thermally activated process with activation energy E(a) = 753 K (523 cm(-1)) prevails. The phase memory time T(M) = 13.9 µs remains practically constant between 200 and 300 K and is determined by nuclear spin diffusion. At lower temperatures T(M) decreases by an order of magnitude and exhibits two minima at T = 140 K and T = 60 K. The temperature dependence of T(M) between 20 and 200 K is attributed to dynamic processes that average inequivalent hyperfine couplings, e.g. rotation of the methyl groups of the cage organic substituents. The hyperfine couplings of the encapsulated proton and the cage (29)Si nuclei are obtained through numerical simulations of field-swept FID-detected EPR spectra and HYSCORE experiments, respectively. The results are discussed in terms of existing phenomenological models based on the spherical harmonic oscillator and compared to those of endohedral fullerenes.

17.
Dalton Trans ; 40(35): 8796-9, 2011 Sep 21.
Article in English | MEDLINE | ID: mdl-21725566

ABSTRACT

Well-defined aryl-Cu(III) species undergo rapid reductive elimination upon reaction with phenolates (PhO(-)), to form aryl-OPh cross-coupling products. Kinetic studies show that the reaction follows a different mechanistic pathway compared to the reaction with phenols. The pH active cyclized pincer-like ligand undergoes an initial amine deprotonation that triggers a faster reactivity at room temperature. A mechanistic proposal for the enhanced reactivity and the role of EPR-detected Cu(II) species will be discussed in detail.

18.
J Am Chem Soc ; 132(35): 12299-306, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20712320

ABSTRACT

The present study provides mechanistic details of a mild aromatic C-H activation effected by a copper(II) center ligated in a triazamacrocylic ligand, affording equimolar amounts of a Cu(III)-aryl species and Cu(I) species as reaction products. At low temperatures the Cu(II) complex 1 forms a three-center, three-electron C-H...Cu(II) interaction, identified by pulse electron paramagnetic resonance spectroscopy and supported by density functional theory calculations. C-H bond cleavage is coupled with copper oxidation, as a Cu(III)-aryl product 2 is formed. This reaction proceeds to completion at 273 K within minutes through either a copper disproportionation reaction or, alternatively, even faster with 1 equiv of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), quantitatively yielding 2. Kinetic studies of both reactions strongly implicate a rate-limiting proton-coupled electron transfer as the key C-H activation step, a mechanism that does not conform to the C-H activation mechanism in a Ni(II) analogue or to any previously proposed C-H activation mechanisms.


Subject(s)
Copper/chemistry , Electrons , Hydrocarbons, Aromatic/chemistry , Organometallic Compounds/chemistry , Protons , Crystallography, X-Ray , Ligands , Macrocyclic Compounds/chemistry , Models, Molecular , Molecular Dynamics Simulation , Organometallic Compounds/chemical synthesis , Temperature
19.
J Biol Inorg Chem ; 15(6): 929-41, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20407914

ABSTRACT

The wide use of the heme group by nature is a consequence of its unusual "electronic flexibility." Major changes in the electronic structure of this molecule can result from small perturbations in its environment. To understand the way the electronic distribution is dictated by the structure of the heme site, it is extremely important to have methods to reliably determine both of them. In this work we propose a way to obtain this information in ferric low-spin heme centers via the determination of g, A, and Q tensors of the coordinated nitrogens using electron spin echo envelope modulation experiments at Q-band microwave frequencies. The results for two bisimidazole heme model complexes, namely, PPIX(Im)(2) and CPIII(Im)(2), where PPIX is protoporphyrin IX, CPIII is coproporphyrin III, and Im is imidazole, selectively labeled with (15)N on the heme or imidazole nitrogens are presented. The planes of the axial ligands were found to be parallel and oriented approximately along one of the N-Fe-N directions of the slightly ruffled porphyrin ring (approximately 10 degrees ). The spin density was determined to reside in an iron d orbital perpendicular to the heme plane and oriented along the other porphyrin N-Fe-N direction, perpendicular to the axial imidazoles. The benefit of the method presented here lies in the use of Q-band microwave frequencies, which improves the orientation selection, results in no/fewer combination lines in the spectra, and allows separation of the contributions of hyperfine and quadrupole interactions due to the fulfillment of the exact cancellation condition at g ( Z ) and the possibility of performing hyperfine decoupling experiments at the g ( X ) observer position. These experimental advantages make the interpretation of the spectra straightforward, which results in precise and reliable determination of the structure and spin distribution.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Ferric Compounds/chemistry , Heme/chemistry , Imidazoles/chemistry , Nitrogen/chemistry
20.
Phys Chem Chem Phys ; 10(5): 743-8, 2008 Feb 07.
Article in English | MEDLINE | ID: mdl-19791458

ABSTRACT

Electron spins of molecular magnets are promising candidates for large scale quantum information processing because they exhibit a large number of low-lying excited states. In this paper X-band pulse electron paramagnetic resonance spectroscopy is used to determine the intrinsic relaxation times T1 and T2 of a molecular magnet with an S = 1/2 ground state, namely the neutral trinuclear oxo-centered iron (III) complex, [Fe3(micro3-O)(O2CPh)5(salox)(EtOH)(EtOH)(H2O)]. The temperature dependence of the spin-lattice relaxation time T1 between 4.5 and 11 K shows that the Orbach relaxation process is dominant with the first excited state lying 57 cm(-1) above the ground state, whereas the phase memory time T(M) is of the order of 2.6 micros and exhibits a modest temperature dependence. These results together with previous magnetic measurements give further insight into the magnetic properties of the complex. The coherent manipulation of the electron spins is also examined by means of transient nutation experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...