Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Constr Robot ; 6(2): 121-131, 2022.
Article in English | MEDLINE | ID: mdl-36164315

ABSTRACT

This research investigates robotically fabricated polychromatic float glass for architectural applications. Polychromatic glass elements usually require labor-intensive processes or are limited to film applications of secondary materials onto the glass. Previous research employs computer numerical control (CNC) based multi-channel granule deposition to manufacture polychromatic relief glass; however, it is limited in motion, channel control, and design space. To expand the design and fabrication space for the manufacture of mono-material polychromatic glass elements, this paper presents further advancements using a UR robotic arm with an advanced multi-channel dispenser, linear and curved-paths granule deposition, customized color pattern design approaches, and a computational tool for the prediction and rendering of outcomes. A large-scale demonstrator serves as a case study for upscaling. Robotic multi-channel deposition and tailored computational design tools are employed to facilitate a full-scale installation consisting of eighteen large glass panels. Novel optical properties include locally varying color, opacity, and texture filter light and view. The resulting product constructs sublime architectural experiences through light refraction, reflection, color, opacity - beyond mere transparency.

2.
3D Print Addit Manuf ; 9(3): 189-202, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-36655202

ABSTRACT

The introduction of robotic arms in additive manufacturing enables the scaling up of three-dimensional (3D) printing processes and the realization of nonplanar path geometries. As a result, novel design potential is unlocked by having control over the layered configuration of paths in the object, and 3D printing becomes viable for architectural applications. However, the various challenges associated with creating feasible nonplanar layered paths for the realization of large-scale objects are hindering their integration in the design process and broad use. This work presents methods that contribute to the flexible and intuitive design of nonplanar layered paths for robotic printing. We focus on the challenges related to the realization of single-shell bifurcating structures, with emphasis on the paths' behavior on the bifurcating moments of the shapes. Our methods are based on the use of design techniques that originate from implicit shape representation and on the detection of critical points on the surface through the lens of distance functions. We present fabricated prototypes printed with nonplanar paths that showcase the possibilities of our methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...