Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 79(8): 807-13, 2010 May.
Article in English | MEDLINE | ID: mdl-20378146

ABSTRACT

Slow release behavior of carbon tetrachloride (CCl(4)) and chloroform (CHCl(3)) in low organic carbon (<0.1%) deep aquifer sediments was quantified by 1-D column desorption studies with intact cores. The compounds had been in contact with the sediments for 30years. Comparison of the CCl(4) distribution coefficient (K(d)) from this study with those from short contact time experiments suggested that CCl(4)K(d)'s calculated from site contaminated sediments of long contact time are likely a factor of 10 or more higher than those calculated from short contact-time lab experiments. A significant portion of the CHCl(3) mass (55% to more than 90%) was resistant to aqueous desorption in sediments with clay contents ranging from 2.0% to 36.7% and organic carbon content ranging from 0.017% to 0.088%. In contrast, CCl(4) showed greatest mass retention (31% or more) only in the highest clay and organic carbon content sediment. Relatively easy solvent extraction of the residual masses of CCl(4) and CHCl(3) from the sediments indicated the compounds were not permanently sequestered. Tracer breakthrough in columns was well behaved, indicating interparticle diffusion was not causing the slow release behavior. Diffusion out of intraparticle pores is suggested to be the main process governing the observed behavior although, diffusion out of natural organic matter cannot be ruled out as a potential contributing factor. The half-life for release of the slow fraction of CHCl(3) mass from sediments was estimated to be in the range of weeks (100h) to months (1100h). Neither CCl(4) or CHCl(3) were detected at measurable levels in the column effluent of one of the sediments even though a significant mass fraction of CHCl(3) was found present on the sediment following desorption suggesting that our estimate of hundreds to thousands of hours for complete release of CHCl(3) masses from such sediment is conservative.


Subject(s)
Carbon Tetrachloride/chemistry , Carbon/chemistry , Chloroform/chemistry , Geologic Sediments/chemistry , Water Pollutants, Chemical/chemistry , Carbon Tetrachloride/analysis , Chloroform/analysis , Environmental Monitoring , Kinetics , Models, Chemical , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...