Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2406235, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007254

ABSTRACT

The great challenges for existing wearable pressure sensors are the degradation of sensing performance and weak interfacial adhesion owing to the low mechanical transfer efficiency and interfacial differences at the skin-sensor interface. Here, an ultrasensitive wearable pressure sensor is reported by introducing a stress-concentrated tip-array design and self-adhesive interface for improving the detection limit. A bipyramidal microstructure with various Young's moduli is designed to improve mechanical transfer efficiency from 72.6% to 98.4%. By increasing the difference in modulus, it also mechanically amplifies the sensitivity to 8.5 V kPa-1 with a detection limit of 0.14 Pa. The self-adhesive hydrogel is developed to strengthen the sensor-skin interface, which allows stable signals for long-term and real-time monitoring. It enables generating high signal-to-noise ratios and multifeatures when wirelessly monitoring weak pulse signals and eye muscle movements. Finally, combined with a deep learning bimodal fused network, the accuracy of fatigued driving identification is significantly increased to 95.6%.

2.
ACS Appl Mater Interfaces ; 13(42): 50101-50110, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34636544

ABSTRACT

Radiation hardness is important for electronics operating in harsh radiation environments such as outer space and nuclear energy industries. In this work, radiation-hardened solution-processed ZrLaO thin films are demonstrated. The radiation effects on solution-processed ZrLaO thin films and InOx/ZrLaO thin-film transistors (TFTs) were systemically investigated. The Zr0.9La0.1Oy thin films demonstrated excellent radiation hardness with negligible roughness, composition, electrical property, and bias-stress stability degradation after radiation exposure. The metal-oxide-semiconductor capacitors (MOSCAPs) based on Zr0.9La0.1Oy gate dielectrics exhibited an ultralow flat band-voltage (VFB) sensitivity of 0.11 mV/krad and 0.19 mV/krad under low dose and high dose gamma irradiation conditions, respectively. The low dose condition had a 103 krad (SiO2) total dose and a 0.12 rad/s low dose rate, whereas the high dose condition had a 580 krad total dose and a 278 rad/s high dose rate. Furthermore, InOx/Zr0.9La0.1Oy thin-film transistors (TFTs) exhibited a large Ion/Ioff of 2 × 106, a small subthreshold swing (SS) of 0.11 V/dec, a small interface trap density (Dit) of 1 × 1012 cm-2, and a 0.16 V threshold shift (ΔVTH) under 3600 s positive bias-stress (PBS). InOx/Zr0.9La0.1Oy TFT-based resistor-loaded inverters demonstrated complete swing behavior, a static output gain of 13.3 under 4 V VDD, and an ∼9% radiation-induced degradation. Through separate investigation of the radiation-induced degradation on the semiconductor layer and dielectric layer of TFTs, it was found that radiation exposure mainly generated oxygen vacancies (Vo) and increased electron concentration among gate oxide. Nevertheless, the radiation-induced TFT instability was mainly related to the semiconductor layer degradation, which could be possibly suppressed by back-channel passivation. The demonstrated results indicate that solution-processed ZrLaO is a high-potential candidate for large-area electronics and circuits applied in harsh radiation environments. In addition, the detailed investigation of radiation-induced degradation on solution-processed high-k dielectrics in this work provided clear inspiration for developing novel flexible rad-hard dielectrics.

3.
Materials (Basel) ; 14(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34576441

ABSTRACT

The quest to harvest untapped renewable infrared energy sources has led to significant research effort in design, fabrication and optimization of a self-biased rectenna that can operate without external bias voltage. At the heart of its design is the engineering of a high-frequency rectifier that can convert terahertz and infrared alternating current (AC) signals to usable direct current (DC). The Metal Insulator Metal (MIM) diode has been considered as one of the ideal candidates for the rectenna system. Its unparalleled ability to have a high response time is due to the fast, femtosecond tunneling process that governs current transport. This paper presents an overview of single, double and triple insulator MIM diodes that have been fabricated so far, in particular focusing on reviewing key figures of merit, such as zero-bias responsivity (ß0), zero-bias dynamic resistance (R0) and asymmetry. The two major oxide contenders for MInM diodes have been NiO and Al2O3, in combination with HfO2, Ta2O5, Nb2O5, ZnO and TiO2. The latter oxide has also been used in combination with Co3O4 and TiOx. The most advanced rectennas based on MI2M diodes have shown that optimal (ß0 and R0) can be achieved by carefully tailoring fabrication processes to control oxide stoichiometry and thicknesses to sub-nanometer accuracy.

4.
ACS Appl Mater Interfaces ; 13(16): 18961-18973, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33848133

ABSTRACT

The ecofriendly combustion synthesis (ECS) and self-combustion synthesis (ESCS) have been successfully utilized to deposit high-k aluminum oxide (AlOx) dielectrics at low temperatures and applied for aqueous In2O3 thin-film transistors (TFTs) accordingly. The ECS and ESCS processes facilitate the formation of high-quality dielectrics at lower temperatures compared to conventional methods based on an ethanol precursor, as confirmed by thermal analysis and chemical composition characterization. The aqueous In2O3 TFTs based on ECS and ESCS-AlOx show enhanced electrical characteristics and counterclockwise transfer-curve hysteresis. The memory-like counterclockwise behavior in the transfer curve modulated by the gate bias voltage is comparable to the signal modulation by the neurotransmitters. ECS and ESCS transistors are employed to perform synaptic emulation; various short-term and long-term memory functions are emulated with low operating voltages and high excitatory postsynaptic current levels. High stability and reproducibility are achieved within 240 pulses of long-term synaptic potentiation and depression. The synaptic emulation functions achieved in this work match the demand for artificial neural networks (ANN), and a multilayer perceptron (MLP) is developed using an ECS-AlOx synaptic transistor for image recognition. A superior recognition rate of over 90% is achieved based on ECS-AlOx synaptic transistors, which facilitates the implementation of the metal-oxide synaptic transistor for future neuromorphic computing via an ecofriendly route.

5.
Nanomaterials (Basel) ; 10(8)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32717952

ABSTRACT

Resistive random access memory (RRAM) devices are receiving increasing extensive attention due to their enhanced properties such as fast operation speed, simple device structure, low power consumption, good scalability potential and so on, and are currently considered to be one of the next-generation alternatives to traditional memory. In this review, an overview of RRAM devices is demonstrated in terms of thin film materials investigation on electrode and function layer, switching mechanisms and artificial intelligence applications. Compared with the well-developed application of inorganic thin film materials (oxides, solid electrolyte and two-dimensional (2D) materials) in RRAM devices, organic thin film materials (biological and polymer materials) application is considered to be the candidate with significant potential. The performance of RRAM devices is closely related to the investigation of switching mechanisms in this review, including thermal-chemical mechanism (TCM), valance change mechanism (VCM) and electrochemical metallization (ECM). Finally, the bionic synaptic application of RRAM devices is under intensive consideration, its main characteristics such as potentiation/depression response, short-/long-term plasticity (STP/LTP), transition from short-term memory to long-term memory (STM to LTM) and spike-time-dependent plasticity (STDP) reveal the great potential of RRAM devices in the field of neuromorphic application.

6.
Micromachines (Basel) ; 11(4)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218324

ABSTRACT

Resistive random access memory (RRAM), which is considered as one of the most promising next-generation non-volatile memory (NVM) devices and a representative of memristor technologies, demonstrated great potential in acting as an artificial synapse in the industry of neuromorphic systems and artificial intelligence (AI), due its advantages such as fast operation speed, low power consumption, and high device density. Graphene and related materials (GRMs), especially graphene oxide (GO), acting as active materials for RRAM devices, are considered as a promising alternative to other materials including metal oxides and perovskite materials. Herein, an overview of GRM-based RRAM devices is provided, with discussion about the properties of GRMs, main operation mechanisms for resistive switching (RS) behavior, figure of merit (FoM) summary, and prospect extension of GRM-based RRAM devices. With excellent physical and chemical advantages like intrinsic Young's modulus (1.0 TPa), good tensile strength (130 GPa), excellent carrier mobility (2.0 × 105 cm2∙V-1∙s-1), and high thermal (5000 Wm-1∙K-1) and superior electrical conductivity (1.0 × 106 S∙m-1), GRMs can act as electrodes and resistive switching media in RRAM devices. In addition, the GRM-based interface between electrode and dielectric can have an effect on atomic diffusion limitation in dielectric and surface effect suppression. Immense amounts of concrete research indicate that GRMs might play a significant role in promoting the large-scale commercialization possibility of RRAM devices.

7.
Micromachines (Basel) ; 10(7)2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31269730

ABSTRACT

Resistive random access memory (RRAM) devices with Ni/AlOx/Pt-structure were manufactured by deposition of a solution-based aluminum oxide (AlOx) dielectric layer which was subsequently annealed at temperatures from 200 °C to 300 °C, in increments of 25 °C. The devices displayed typical bipolar resistive switching characteristics. Investigations were carried out on the effect of different annealing temperatures for associated RRAM devices to show that performance was correlated with changes of hydroxyl group concentration in the AlOx thin films. The annealing temperature of 250 °C was found to be optimal for the dielectric layer, exhibiting superior performance of the RRAM devices with the lowest operation voltage (<1.5 V), the highest ON/OFF ratio (>104), the narrowest resistance distribution, the longest retention time (>104 s) and the most endurance cycles (>150).

8.
Data Brief ; 5: 926-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26702423

ABSTRACT

Ellipsometry was used to measure the amplitude ratio and phase difference of light undergoing a phase shift as it interacts with a thin film of organic-inorganic hybrid perovskite CH3NH3PbI3 (MAPI) deposited onto a (100) silicon wafer. The refractive index and extinction coefficient was extracted from a multi-oscillator model fit to the ellipsometry data, as a function of wavelength, from 300 to 1500 nm.

9.
Materials (Basel) ; 8(12): 8169-8182, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-28793705

ABSTRACT

In this research, the hafnium titanate oxide thin films, TixHf1-xO2, with titanium contents of x = 0, 0.25, 0.9, and 1 were deposited on germanium substrates by atomic layer deposition (ALD) at 300 °C. The approximate deposition rates of 0.2 Å and 0.17 Å per cycle were obtained for titanium oxide and hafnium oxide, respectively. X-ray Photoelectron Spectroscopy (XPS) indicates the formation of GeOx and germanate at the interface. X-ray diffraction (XRD) indicates that all the thin films remain amorphous for this deposition condition. The surface roughness was analyzed using an atomic force microscope (AFM) for each sample. The electrical characterization shows very low hysteresis between ramp up and ramp down of the Capacitance-Voltage (CV) and the curves are indicative of low trap densities. A relatively large leakage current is observed and the lowest leakage current among the four samples is about 1 mA/cm² at a bias of 0.5 V for a Ti0.9Hf0.1O2 sample. The large leakage current is partially attributed to the deterioration of the interface between Ge and TixHf1-xO2 caused by the oxidation source from HfO2. Consideration of the energy band diagrams for the different materials systems also provides a possible explanation for the observed leakage current behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...