Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Nature ; 628(8007): 273-274, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38580860
2.
Sci Adv ; 9(46): eadg3035, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37976352

ABSTRACT

The Mid-Pliocene represents the most recent interval in Earth history with climatic conditions similar to those expected in the coming decades. Mid-Pliocene sea level estimates therefore provide important constraints on projections of future ice sheet behavior and sea level change but differ by tens of meters due to local distortion of paleoshorelines caused by mantle dynamics. We combine an Australian sea level marker compilation with geodynamic simulations and probabilistic inversions to quantify and remove these post-Pliocene vertical motions at continental scale. Dynamic topography accounts for most of the observed sea level marker deflection, and correcting for this effect and glacial isostatic adjustment yields a Mid-Pliocene global mean sea level of +16.0 (+10.4 to +21.5) m (50th/16th to 84th percentiles). Recalibration of recent high-end sea level projections using this revised estimate implies a more stable Antarctic Ice Sheet under future warming scenarios, consistent with midrange forecasts of sea level rise that do not incorporate a marine ice cliff instability.

3.
Proc Natl Acad Sci U S A ; 120(17): e2209615120, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37068242

ABSTRACT

The first records of Greenland Vikings date to 985 CE. Archaeological evidence yields insight into how Vikings lived, yet drivers of their disappearance in the 15th century remain enigmatic. Research suggests a combination of environmental and socioeconomic factors, and the climatic shift from the Medieval Warm Period (~900 to 1250 CE) to the Little Ice Age (~1250 to 1900 CE) may have forced them to abandon Greenland. Glacial geomorphology and paleoclimate research suggest that the Southern Greenland Ice Sheet readvanced during Viking occupation, peaking in the Little Ice Age. Counterintuitively, the readvance caused sea-level rise near the ice margin due to increased gravitational attraction toward the ice sheet and crustal subsidence. We estimate ice growth in Southwestern Greenland using geomorphological indicators and lake core data from previous literature. We calculate the effect of ice growth on regional sea level by applying our ice history to a geophysical model of sea level with a resolution of ~1 km across Southwestern Greenland and compare the results to archaeological evidence. The results indicate that sea level rose up to ~3.3 m outside the glaciation zone during Viking settlement, producing shoreline retreat of hundreds of meters. Sea-level rise was progressive and encompassed the entire Eastern Settlement. Moreover, pervasive flooding would have forced abandonment of many coastal sites. These processes likely contributed to the suite of vulnerabilities that led to Viking abandonment of Greenland. Sea-level change thus represents an integral, missing element of the Viking story.

4.
Commun Earth Environ ; 4(1): 328, 2023.
Article in English | MEDLINE | ID: mdl-38665194

ABSTRACT

Understanding sea level during the peak of the Last Interglacial (125,000 yrs ago) is important for assessing future ice-sheet dynamics in response to climate change. The coasts and continental shelves of northeastern Australia (Queensland) preserve an extensive Last Interglacial record in the facies of coastal strandplains onland and fossil reefs offshore. However, there is a discrepancy, amounting to tens of meters, in the elevation of sea-level indicators between offshore and onshore sites. Here, we assess the influence of geophysical processes that may have changed the elevation of these sea-level indicators. We modeled sea-level change due to dynamic topography, glacial isostatic adjustment, and isostatic adjustment due to coral reef loading. We find that these processes caused relative sea-level changes on the order of, respectively, 10 m, 5 m, and 0.3 m. Of these geophysical processes, the dynamic topography predictions most closely match the tilting observed between onshore and offshore sea-level markers.

5.
Science ; 377(6614): 1550-1554, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36173832

ABSTRACT

Rapid melting of ice sheets and glaciers drives a unique geometry, or fingerprint, of sea level change. However, the detection of individual fingerprints has been challenging because of sparse observations at high latitudes and the difficulty of disentangling ocean dynamic variability from the signal. We predict the fingerprint of Greenland Ice Sheet (GrIS) melt using recent ice mass loss estimates from radar altimetry data and model reconstructions of nearby glaciers and compare this prediction to an independent, altimetry-derived sea surface height trend corrected for ocean dynamic variability in the region adjacent to the ice sheet. A statistically significant correlation between the two fields (P < 0.001) provides an unambiguous observational detection of the near-field sea level fingerprint of recent GrIS melting in our warming world.

6.
Sci Adv ; 8(26): eabm6185, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35767617

ABSTRACT

An accurate record of preindustrial (pre-1900 CE) sea level is necessary to contextualize modern global mean sea level (GMSL) rise with respect to natural variability. Precisely dated phreatic overgrowths on speleothems (POS) provide detailed rates of Late Holocene sea-level rise in Mallorca. Statistical analysis indicates that sea level rose locally by 0.12 to 0.31 m (95% confidence) from 3.26 to 2.84 thousand years (ka) ago (2σ) and remained within 0.08 m (95% confidence) of preindustrial levels from 2.84 ka to 1900 CE. This sea-level history is consistent with glacial isostatic adjustment models adopting relatively weak upper mantle viscosities of ~1020 Pa s. There is virtual certainty (>0.999 probability) that the average GMSL rise since 1900 CE has exceeded even the high average rate of sea-level rise between 3.26 and 2.84 ka inferred from the POS record. We conclude that modern GMSL rise is anomalous relative to any natural variability in ice volumes over the past 4000 years.

7.
Sci Adv ; 7(18)2021 Apr.
Article in English | MEDLINE | ID: mdl-33931453

ABSTRACT

Geodetic, seismic, and geological evidence indicates that West Antarctica is underlain by low-viscosity shallow mantle. Thus, as marine-based sectors of the West Antarctic Ice Sheet (WAIS) retreated during past interglacials, or will retreat in the future, exposed bedrock will rebound rapidly and flux meltwater out into the open ocean. Previous studies have suggested that this contribution to global mean sea level (GMSL) rise is small and occurs slowly. We challenge this notion using sea level predictions that incorporate both the outflux mechanism and complex three-dimensional viscoelastic mantle structure. In the case of the last interglacial, where the GMSL contribution from WAIS collapse is often cited as ~3 to 4 meters, the outflux mechanism contributes ~1 meter of additional GMSL change within ~1 thousand years of the collapse. Using a projection of future WAIS collapse, we also demonstrate that the outflux can substantially amplify GMSL rise estimates over the next century.

8.
J Geophys Res Planets ; 126(12): e2021JE006875, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35846556

ABSTRACT

Tides and Earth-Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows E a r t h ' s rotation rate, increases obliquity, lunar orbit semi-major axis and eccentricity, and decreases lunar inclination. Tidal and core-mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi-major axis. Here we integrate the Earth-Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are "high-level" (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and E a r t h ' s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth-Moon system parameters. Of consequence for ocean circulation and climate, absolute (un-normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded t o d a y ' s rate due to a closer Moon. Prior to ∼ 3 Ga , evolution of inclination and eccentricity is dominated by tidal and core-mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth-Moon system. A drawback for our results is that the semi-major axis does not collapse to near-zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation.

9.
Nature ; 587(7835): 600-604, 2020 11.
Article in English | MEDLINE | ID: mdl-33239798

ABSTRACT

Sea-level rise due to ice loss in the Northern Hemisphere in response to insolation and greenhouse gas forcing is thought to have caused grounding-line retreat of marine-based sectors of the Antarctic Ice Sheet (AIS)1-3. Such interhemispheric sea-level forcing may explain the synchronous evolution of global ice sheets over ice-age cycles. Recent studies that indicate that the AIS experienced substantial millennial-scale variability during and after the last deglaciation4-7 (roughly 20,000 to 9,000 years ago) provide further evidence of this sea-level forcing. However, global sea-level change as a result of mass loss from ice sheets is strongly nonuniform, owing to gravitational, deformational and Earth rotational effects8, suggesting that the response of AIS grounding lines to Northern Hemisphere sea-level forcing is more complicated than previously modelled1,2,6. Here, using an ice-sheet model coupled to a global sea-level model, we show that AIS dynamics are amplified by Northern Hemisphere sea-level forcing. As a result of this interhemispheric interaction, a large or rapid Northern Hemisphere sea-level forcing enhances grounding-line advance and associated mass gain of the AIS during glaciation, and grounding-line retreat and mass loss during deglaciation. Relative to models without these interactions, the inclusion of Northern Hemisphere sea-level forcing in our model increases the volume of the AIS during the Last Glacial Maximum (about 26,000 to 20,000 years ago), triggers an earlier retreat of the grounding line and leads to millennial-scale variability throughout the last deglaciation. These findings are consistent with geologic reconstructions of the extent of the AIS during the Last Glacial Maximum and subsequent ice-sheet retreat, and with relative sea-level change in Antarctica3-7,9,10.

10.
Earths Future ; 8(7): e2020EF001497, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32999891

ABSTRACT

The artificial impoundment of water behind dams causes global mean sea level (GMSL) to fall as reservoirs fill but also generates a local rise in sea level due to the increased mass in the reservoir and the crustal deformation this mass induces. To estimate spatiotemporal fluctuations in sea level due to water impoundment, we use a historical data set that includes 6,329 reservoirs completed between 1900 and 2011, as well as projections of 3,565 reservoirs that are expected to be completed by 2040. The GMSL change associated with the historical data (-0.2 mm yr-1 from 1900-2011) is consistent with previous studies, but the temporal and spatial resolution allows for local studies that were not previously possible, revealing that some locations experience a sea level rise of as much as 40 mm over less than a decade. Future construction of reservoirs through ~2040 is projected to cause a GMSL fall whose rate is comparable to that of the last century (-0.3 mm yr-1) but with a geographic distribution that will be distinct from the last century, including a rise in sea level in more coastal areas. The analysis of expected construction shows that significant impoundment near coastal communities in the coming decades could enhance the flooding risk already heightened by global sea level rise.

11.
Rev Geophys ; 58(3): e2019RG000672, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32879921

ABSTRACT

Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea-level observing system, the knowledge of regional sea-level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea-level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea-level change. Here we review the individual processes which lead to sea-level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea-level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea-level observation network-particularly as related to satellite observations-in the improved scientific understanding of the contributors to regional sea-level change.

12.
Nature ; 577(7792): 660-664, 2020 01.
Article in English | MEDLINE | ID: mdl-31996820

ABSTRACT

Sea-level histories during the two most recent deglacial-interglacial intervals show substantial differences1-3 despite both periods undergoing similar changes in global mean temperature4,5 and forcing from greenhouse gases6. Although the last interglaciation (LIG) experienced stronger boreal summer insolation forcing than the present interglaciation7, understanding why LIG global mean sea level may have been six to nine metres higher than today has proven particularly challenging2. Extensive areas of polar ice sheets were grounded below sea level during both glacial and interglacial periods, with grounding lines and fringing ice shelves extending onto continental shelves8. This suggests that oceanic forcing by subsurface warming may also have contributed to ice-sheet loss9-12 analogous to ongoing changes in the Antarctic13,14 and Greenland15 ice sheets. Such forcing would have been especially effective during glacial periods, when the Atlantic Meridional Overturning Circulation (AMOC) experienced large variations on millennial timescales16, with a reduction of the AMOC causing subsurface warming throughout much of the Atlantic basin9,12,17. Here we show that greater subsurface warming induced by the longer period of reduced AMOC during the penultimate deglaciation can explain the more-rapid sea-level rise compared with the last deglaciation. This greater forcing also contributed to excess loss from the Greenland and Antarctic ice sheets during the LIG, causing global mean sea level to rise at least four metres above modern levels. When accounting for the combined influences of penultimate and LIG deglaciation on glacial isostatic adjustment, this excess loss of polar ice during the LIG can explain much of the relative sea level recorded by fossil coral reefs and speleothems at intermediate- and far-field sites.


Subject(s)
Ice Cover , Sea Level Rise/history , Seawater/analysis , Animals , Antarctic Regions , Anthozoa , Coral Reefs , Foraminifera , Fossils , Greenland , History, Ancient , Ice Cover/chemistry , Models, Theoretical , Temperature
13.
Sci Adv ; 5(1): eaav2366, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30729164

ABSTRACT

The imprint of glacial isostatic adjustment has long been recognized in shoreline elevations of oceans and proglacial lakes, but to date, its signature has not been identified in river long profiles. Here, we reveal that the buried bedrock valley floor of the upper Mississippi River exhibits a 110-m-deep, 300-km-long overdeepening that we interpret to be a partial cast of the Laurentide Ice Sheet forebulge, the ring of flexurally raised lithosphere surrounding the ice sheet. Incision through this forebulge occurred during a single glacial cycle at some time between 2.5 and 0.8 million years before present, when ice-sheet advance forced former St. Lawrence River tributaries in Minnesota and Wisconsin to flow southward. This integrated for the first time the modern Mississippi River, permanently changing continental-scale hydrology and carving a bedrock valley through the migrating forebulge with sediment-poor water. The shape of the inferred forebulge is consistent with an ice sheet ~1 km thick near its margins, similar to the Laurentide Ice Sheet at the Last Glacial Maximum, and provides evidence of the impact of geodynamic processes on geomorphology even in the midst of a stable craton.

14.
Nature ; 564(7736): 400-404, 2018 12.
Article in English | MEDLINE | ID: mdl-30568196

ABSTRACT

Identifying the causes of historical trends in relative sea level-the height of the sea surface relative to Earth's crust-is a prerequisite for predicting future changes. Rates of change along the eastern coast of the USA (the US East Coast) during the past century were spatially variable, and relative sea level rose faster along the Mid-Atlantic Bight than along the South Atlantic Bight and the Gulf of Maine. Past studies suggest that Earth's ongoing response to the last deglaciation1-5, surface redistribution of ice and water5-9 and changes in ocean circulation9-13 contributed considerably to this large-scale spatial pattern. Here we analyse instrumental data14,15 and proxy reconstructions4,12 using probabilistic methods16-18 to show that vertical motions of Earth's crust exerted the dominant control on regional spatial differences in relative sea-level trends along the US East Coast during 1900-2017, explaining most of the large-scale spatial variance. Rates of coastal subsidence caused by ongoing relaxation of the peripheral forebulge associated with the last deglaciation are strongest near North Carolina, Maryland and Virginia. Such structure indicates that Earth's elastic lithosphere is thicker than has been assumed in other models19-22. We also find a substantial coastal gradient in relative sea-level trends over this period that is unrelated to deglaciation and suggests contributions from twentieth-century redistribution of ice and water. Our results indicate that the majority of large-scale spatial variation in long-term rates of relative sea-level rise on the US East Coast is due to geological processes that will persist at similar rates for centuries.

15.
Nature ; 551(7680): 321-326, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29144451

ABSTRACT

Earth's body tide-also known as the solid Earth tide, the displacement of the solid Earth's surface caused by gravitational forces from the Moon and the Sun-is sensitive to the density of the two Large Low Shear Velocity Provinces (LLSVPs) beneath Africa and the Pacific. These massive regions extend approximately 1,000 kilometres upward from the base of the mantle and their buoyancy remains actively debated within the geophysical community. Here we use tidal tomography to constrain Earth's deep-mantle buoyancy derived from Global Positioning System (GPS)-based measurements of semi-diurnal body tide deformation. Using a probabilistic approach, we show that across the bottom two-thirds of the two LLSVPs the mean density is about 0.5 per cent higher than the average mantle density across this depth range (that is, its mean buoyancy is minus 0.5 per cent), although this anomaly may be concentrated towards the very base of the mantle. We conclude that the buoyancy of these structures is dominated by the enrichment of high-density chemical components, probably related to subducted oceanic plates or primordial material associated with Earth's formation. Because the dynamics of the mantle is driven by density variations, our result has important dynamical implications for the stability of the LLSVPs and the long-term evolution of the Earth system.

16.
Sci Adv ; 3(7): e1700457, 2017 07.
Article in English | MEDLINE | ID: mdl-28695210

ABSTRACT

Estimating minimum ice volume during the last interglacial based on local sea-level indicators requires that these indicators are corrected for processes that alter local sea level relative to the global average. Although glacial isostatic adjustment is generally accounted for, global scale dynamic changes in topography driven by convective mantle flow are generally not considered. We use numerical models of mantle flow to quantify vertical deflections caused by dynamic topography and compare predictions at passive margins to a globally distributed set of last interglacial sea-level markers. The deflections predicted as a result of dynamic topography are significantly correlated with marker elevations (>95% probability) and are consistent with construction and preservation attributes across marker types. We conclude that a dynamic topography signal is present in the elevation of last interglacial sea-level records and that the signal must be accounted for in any effort to determine peak global mean sea level during the last interglacial to within an accuracy of several meters.

17.
Proc Natl Acad Sci U S A ; 113(11): E1434-41, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26903659

ABSTRACT

We assess the relationship between temperature and global sea-level (GSL) variability over the Common Era through a statistical metaanalysis of proxy relative sea-level reconstructions and tide-gauge data. GSL rose at 0.1 ± 0.1 mm/y (2σ) over 0-700 CE. A GSL fall of 0.2 ± 0.2 mm/y over 1000-1400 CE is associated with ∼ 0.2 °C global mean cooling. A significant GSL acceleration began in the 19th century and yielded a 20th century rise that is extremely likely (probability [Formula: see text]) faster than during any of the previous 27 centuries. A semiempirical model calibrated against the GSL reconstruction indicates that, in the absence of anthropogenic climate change, it is extremely likely ([Formula: see text]) that 20th century GSL would have risen by less than 51% of the observed [Formula: see text] cm. The new semiempirical model largely reconciles previous differences between semiempirical 21st century GSL projections and the process model-based projections summarized in the Intergovernmental Panel on Climate Change's Fifth Assessment Report.

18.
Nature ; 517(7535): 481-484, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25629092

ABSTRACT

Estimating and accounting for twentieth-century global mean sea level (GMSL) rise is critical to characterizing current and future human-induced sea-level change. Several previous analyses of tide gauge records--employing different methods to accommodate the spatial sparsity and temporal incompleteness of the data and to constrain the geometry of long-term sea-level change--have concluded that GMSL rose over the twentieth century at a mean rate of 1.6 to 1.9 millimetres per year. Efforts to account for this rate by summing estimates of individual contributions from glacier and ice-sheet mass loss, ocean thermal expansion, and changes in land water storage fall significantly short in the period before 1990. The failure to close the budget of GMSL during this period has led to suggestions that several contributions may have been systematically underestimated. However, the extent to which the limitations of tide gauge analyses have affected estimates of the GMSL rate of change is unclear. Here we revisit estimates of twentieth-century GMSL rise using probabilistic techniques and find a rate of GMSL rise from 1901 to 1990 of 1.2 ± 0.2 millimetres per year (90% confidence interval). Based on individual contributions tabulated in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, this estimate closes the twentieth-century sea-level budget. Our analysis, which combines tide gauge records with physics-based and model-derived geometries of the various contributing signals, also indicates that GMSL rose at a rate of 3.0 ± 0.7 millimetres per year between 1993 and 2010, consistent with prior estimates from tide gauge records.The increase in rate relative to the 1901-90 trend is accordingly larger than previously thought; this revision may affect some projections of future sea-level rise.


Subject(s)
Seawater/analysis , Bias , Climate Change/statistics & numerical data , History, 20th Century , History, 21st Century , Human Activities , Oceans and Seas , Probability , Tidal Waves , Time Factors , Uncertainty
19.
Sci Adv ; 1(11): e1500679, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26824058

ABSTRACT

In 2002, Munk defined an important enigma of 20th century global mean sea-level (GMSL) rise that has yet to be resolved. First, he listed three canonical observations related to Earth's rotation [(i) the slowing of Earth's rotation rate over the last three millennia inferred from ancient eclipse observations, and changes in the (ii) amplitude and (iii) orientation of Earth's rotation vector over the last century estimated from geodetic and astronomic measurements] and argued that they could all be fit by a model of ongoing glacial isostatic adjustment (GIA) associated with the last ice age. Second, he demonstrated that prevailing estimates of the 20th century GMSL rise (~1.5 to 2.0 mm/year), after correction for the maximum signal from ocean thermal expansion, implied mass flux from ice sheets and glaciers at a level that would grossly misfit the residual GIA-corrected observations of Earth's rotation. We demonstrate that the combination of lower estimates of the 20th century GMSL rise (up to 1990) improved modeling of the GIA process and that the correction of the eclipse record for a signal due to angular momentum exchange between the fluid outer core and the mantle reconciles all three Earth rotation observations. This resolution adds confidence to recent estimates of individual contributions to 20th century sea-level change and to projections of GMSL rise to the end of the 21st century based on them.

20.
Nature ; 502(7473): 668-71, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24172978

ABSTRACT

At the Last Glacial Maximum (LGM), about 21,000 years before present, land-based ice sheets held enough water to reduce global mean sea level by 130 metres. Yet after decades of study, major uncertainties remain as to the distribution of that ice. Here we test four reconstructions of North American deglacial ice-sheet history by quantitatively connecting them to high-resolution oxygen isotope (δ(18)O) records from the Gulf of Mexico using a water mixing model. For each reconstruction, we route meltwater and seasonal runoff through the time-evolving Mississippi drainage basin, which co-evolves with ice geometry and changing topography as ice loads deform the solid Earth and produce spatially variable sea level in a process known as glacial isostatic adjustment. The δ(18)O records show that the Mississippi-drained southern Laurentide ice sheet contributed only 5.4 ± 2.1 metres to global sea level rise, of which 0.66 ± 0.07 metres were released during the meltwater pulse 1A event 14,650-14,310 years before present, far less water than previously thought. In contrast, the three reconstructions based on glacial isostatic adjustment overpredict the δ(18)O-based post-LGM meltwater volume by a factor of 1.6 to 3.6. The fourth reconstruction, which is based on ice physics, has a low enough Mississippi-routed meltwater discharge to be consistent with δ(18)O constraints, but also contains the largest LGM North American ice volume. This suggests that modelling based on ice physics may be the best way of matching isotopic records while also sequestering enough water in the North American ice sheets to match the observed LGM sea level fall.


Subject(s)
Ice Cover , Rivers , Seawater/analysis , Freezing , Gulf of Mexico , History, Ancient , Mississippi , Models, Theoretical , Oxygen Isotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...