Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 123(24): 243905, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31922846

ABSTRACT

We demonstrate a peculiar mechanism for the formation of bound states of light pulses of substantially different optical frequencies, in which pulses are strongly bound across a vast frequency gap. This is enabled by a propagation constant with two separate regions of anomalous dispersion. The resulting soliton compound exhibits moleculelike binding energy, vibration, and radiation and can be understood as a mutual trapping providing a striking analogy to quantum mechanics. The phenomenon constitutes an intriguing case of two light waves mutually affecting and controlling each other.

2.
Article in English | MEDLINE | ID: mdl-23076442

ABSTRACT

Harbour seals are active at night and during the day and see well in both air and water. Polarised light, which is a well-known visual cue for orientation, navigation and foraging, is richly available in harbour seal habitats, both above and below the water surface. We hypothesised that an ability to detect and use polarised light could be valuable for seals, and thus tested if they are able to see this property of light. We performed two behavioural experiments, one involving object discrimination and the other involving object detection. These objects were presented to the seals as two-dimensional stimuli on a specially modified liquid crystal display that generated objects whose contrast was purely defined in terms of polarisation (i.e. objects lacked luminance contrast). In both experiments, the seals' performance did not deviate significantly from chance. In contrast, the seals showed a high baseline performance when presented with objects on a non-modified display (whose contrast was purely defined in terms of luminance). We conclude that harbour seals are unable to use polarised light in our experimental context. It remains for future work to elucidate if they are polarisation insensitive per se.


Subject(s)
Light , Phoca/physiology , Vision, Ocular , Animals , Behavior, Animal , Cues , Discrimination, Psychological , Ecosystem , Male , Oceans and Seas , Phoca/psychology , Photic Stimulation , Signal Detection, Psychological
3.
Sci Rep ; 2: 850, 2012.
Article in English | MEDLINE | ID: mdl-23152941

ABSTRACT

The concept of rogue waves arises from a mysterious and potentially calamitous phenomenon of oceanic surfaces. There is mounting evidence that they are actually commonplace in a variety of different physical settings. A set of defining criteria has been advanced; this set is of great generality and therefore applicable to a wide class of systems. The question arises naturally whether there are generic mechanisms responsible for extreme events in different systems. Here we argue that under suitable circumstances nonlinear interaction between weak and strong waves results in intermittent giant waves with all the signatures of rogue waves. To obtain these circumstances only a few basic conditions must be met. Then reflection of waves at the so-called group-velocity horizon occurs. The connection between rogue waves and event horizons, seemingly unrelated physical phenomena, is identified as a feature common in many different physical systems.

4.
Sci Rep ; 2: 866, 2012.
Article in English | MEDLINE | ID: mdl-23173078

ABSTRACT

Optical telecommunication employs light pulses travelling down optical fibres; in a binary format logical Ones and Zeroes are represented by the presence or absence of a light pulse in a given time slot, respectively. The fibre's data-carrying capacity must keep up with increasing demand, but for binary coding it now approaches its limit. Alternative coding schemes beyond binary are currently hotly debated; the challenge is to mitigate detrimental effects from the fibre's nonlinearity. Here we provide proof-of-principle that coding with solitons and soliton molecules allows to encode two bits of data per clock period. Solitons do not suffer from nonlinearity, rather, they rely on it; this endows them with greater robustness. However, they are universally considered to be restricted to binary coding. With that notion now refuted, it is warranted to rethink future systems.

5.
Opt Express ; 18(25): 25993-8, 2010 Dec 06.
Article in English | MEDLINE | ID: mdl-21164946

ABSTRACT

The complex mechanism of multiple interactions between solitary and dispersive waves at the advanced stage of supercontinuum generation in photonic crystal fiber is studied in experiment and numerical simulations. Injection of high power negatively chirped pulses near zero dispersion frequency results in an effective soliton fission process with multiple interactions between red shifted Raman solitons and dispersive waves. These interactions may result in relative acceleration of solitons with further collisions between them of quasi-elastic or quasi-plastic kinds. In the spectral domain these processes result in enhancement of certain wavelength regions within the spectrum or development of a new significant band at the long wavelength side of the spectrum.


Subject(s)
Optical Fibers , Refractometry/instrumentation , Computer Simulation , Computer-Aided Design , Crystallization , Equipment Design , Equipment Failure Analysis , Light , Models, Theoretical , Photons , Refractometry/methods , Scattering, Radiation
6.
Opt Lett ; 35(13): 2167-9, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20596182

ABSTRACT

In this Letter we give theoretical explanations for the recent observations of the excitation of Raman-shifting pulse pairs in solid-core photonic crystal fibers. The formation of these pairs is surprisingly common in the deep anomalous dispersion regime of a large variety of highly nonlinear optical fibers, away from zero group-velocity dispersion points. We have developed two different theoretical models, which agree very well in their conclusions. A qualitative and a quantitative explanation of pair formation is provided, and the existence of multipeak states is predicted.

7.
Chaos ; 5(1): 76-81, 1995 Mar.
Article in English | MEDLINE | ID: mdl-12780159

ABSTRACT

In many biological systems, information is transferred by hormonal ligands, and it is assumed that these hormonal signals encode developmental and regulatory programs in mammalian organisms. In contrast to the dogma of endocrine homeostasis, it could be shown that the biological information in hormonal networks is not only present as a constant hormone concentration in the circulation pool. Recently, it has become apparent that hormone pulses contribute to this hormonal pool, which modulates the responsiveness of receptors within the cell membrane by regulation of the receptor synthesis, movement within the membrane layer, coupling to signal transduction proteins and internalization. Phase space analysis of dynamic parathyroid hormone (PTH) secretion allowed the definition of a (in comparison to normal subjects) relatively quiet "low dynamic" secretory pattern in osteoporosis, and a "high dynamic" state in hyperparathyroidism. We now investigate whether this pulsatile secretion of PTH in healthy men exhibits characteristics of nonlinear determinism. Our findings suggest that this is conceivable, although on the basis of presently available data and techniques, no proof can be established. Nevertheless, pulsatile secretion of PTH might be a first example of nonlinear deterministic dynamics in an apparently irregular hormonal rhythm in human physiology. (c) 1995 American Institute of Physics.

SELECTION OF CITATIONS
SEARCH DETAIL
...