Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(24): 26307-26315, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38911715

ABSTRACT

Hexagonal boron nitride (hBN) has a property similar to that of graphene, and it has become one of the most popular materials due to its flexible physical and chemical properties for a variety of applications, especially in nanoelectronics. Enhanced properties of hBN-based heterostructures are crucial for future electronic devices. In this work, a sheet-like hBN crystal was synthesized and transferred onto SiO2/Si substrate and reduced graphene oxide (RGO)/SiO2/Si substrate. Accordingly, the hBN and hBN/RGO films are investigated by optical microscopy, X-ray diffraction, high-resolution transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. The thickness of a single hBN layer is approximately 0.4 nm. A few layers of hBN stacked in large areas are mostly observed in both hBN and the hBN/RGO films. By using Kelvin probe force microscopy, it was found that the hBN/RGO heterostructure has a contact surface potential higher than that of the hBN layer. The large-scale synthesis and fabrication of hBN/RGO films could be extended to fabricate other van der Waals heterostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...