Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(30): e2302561120, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37467270

ABSTRACT

Metal-organic frameworks (MOFs), which possess a high degree of crystallinity and a large surface area with tunable inorganic nodes and organic linkers, exhibit high stimuli-responsiveness and molecular adsorption selectivity that enable various applications. The adsorption in MOFs changes the crystalline structure and elastic moduli. Thus, the coexistence of adsorbed/desorbed sites makes the host matrices elastically heterogeneous. However, the role of elastic heterogeneity in the adsorption-desorption transition has been overlooked. Here, we show the asymmetric role of elastic heterogeneity in the adsorption-desorption transition. We construct a minimal model incorporating adsorption-induced lattice expansion/contraction and an increase/decrease in the elastic moduli. We find that the transition is hindered by the entropic and energetic effects which become asymmetric in the adsorption process and desorption process, leading to the strong hysteretic nature of the transition. Furthermore, the adsorbed/desorbed sites exhibit spatially heterogeneous domain formation, implying that the domain morphology and interfacial area between adsorbed/desorbed sites can be controlled by elastic heterogeneity. Our results provide a theoretical guideline for designing soft porous crystals with tunable adsorption hysteresis and the dispersion and domain morphology of adsorbates using elastic heterogeneity.

2.
Phys Rev Lett ; 124(8): 087201, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32167313

ABSTRACT

We show theoretically that spin and orbital degrees of freedom in the pyrochlore oxide Y_{2}Mo_{2}O_{7}, which is free of quenched disorder, can exhibit a simultaneous glass transition, working as dynamical disorder for each other. The interplay of spins and orbitals is mediated by the Jahn-Teller lattice distortion that selects the choice of orbitals, which then generates variant spin exchange interactions ranging from ferromagnetic to antiferromagnetic ones. Our Monte Carlo simulations detect the power-law divergence of the relaxation times and the negative divergence of both the magnetic and dielectric nonlinear susceptibilities, resolving the long-standing puzzle on the origin of the disorder-free spin glass.

3.
Soft Matter ; 14(19): 3919-3928, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29726878

ABSTRACT

We study the orientational ordering of 2-dimensional closely packed Janus particles by extensive Monte Carlo simulations. For smaller patch sizes, the system remains in the plastic crystal phase where the rotational degrees of freedom are disordered down to the lowest temperatures. There the liquid consists of dimers and trimers of the attractive patches. For large enough patch sizes, the system exhibits a thermodynamic transition into a phase with the stripe patterns of the patches breaking the three-fold rotational symmetry. Our results strongly suggest that the latter is a 2nd order phase transition whose universality is the same as that of the 3-state Potts model in 2-dimensions. Furthermore we analyzed the relaxation dynamics of the system performing quenching simulations on the stripe phase. We found growth of the domains of the stripes. The relaxation of key dynamical quantities follows universal scaling features in terms of the domain size.

SELECTION OF CITATIONS
SEARCH DETAIL