Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Ther Sci ; 34(4): 315-319, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35400839

ABSTRACT

[Purpose] We aimed to identify the relationship among trunk control, activities of daily living, and upper extremity function during the first week after stroke in patients with acute cerebral infarction. [Participants and Methods] Ninety-five patients with first cerebral infarction were included. Trunk control was assessed using the Postural Assessment Scale for Stroke. Additionally, activities of daily living were evaluated using the Functional Independence Measure, and upper extremity function was assessed using the upper extremity component of the Fugl-Meyer Assessment. Correlation analysis was performed to examine the relationships among these three measures. Furthermore, stepwise multiple regression analysis was performed to investigate the factors affecting activities of daily living. [Results] The total score and two subcategories of the Postural Assessment Scale for Stroke were significantly correlated with the Functional Independence Measure motor values. Stepwise multiple regression analysis revealed age and the Postural Assessment Scale for Stroke as factors influencing the Functional Independence Measure. Moreover, the Postural Assessment Scale for Stroke and upper extremity component of Fugl-Meyer Assessment showed a high correlation. [Conclusion] The trunk control ability assessed using the Postural Assessment Scale for Stroke is strongly correlated with activities of daily living estimated using the Functional Independence Measure in the first week after stroke in patients with acute cerebral infarction. The upper extremity component of Fugl-Meyer Assessment was not identified as a factor affecting the Functional Independence Measure.

2.
Front Hum Neurosci ; 15: 680847, 2021.
Article in English | MEDLINE | ID: mdl-34239431

ABSTRACT

Background: Post-stroke depression (PSD) is the most common mood disorder following stroke and is also the main factor that limits the recovery and rehabilitation of patients with stroke. The prevalence of PSD is ~30%. Since there is no gold standard for the diagnosis and evaluation of PSD, it is important to raise awareness of PSD and to establish methods for its evaluation, early diagnosis, and treatment. In the field of psychiatry, functional near-infrared spectroscopy (fNIRS) has been used as a diagnostic tool for the measurement of oxygenated hemoglobin (oxy-Hb). This study aimed to assess whether fNIRS could be applied in the diagnosis and evaluation of PSD. Methods: We recruited 45 patients with stroke, who were admitted to Nagasaki Kita Hospital between May 2015 and April 2019. The 17-item Hamilton Rating Scale for Depression (HAMD17), which is considered to be a useful screening and evaluation tool for PSD, was used for the assessment of patients after stroke; moreover, oxy-Hb was measured in the pre-frontal cortex. The subjects were divided into two groups: the depressed group (n = 13) and the non-depressed group (n = 32). We evaluated the correlation between the oxy-Hb integral values and HAMD17 scores. Results: We investigated the relationship between the oxy-Hb integral values and HAMD17 total scores, and found a negative correlation between them (ρ = -0.331, P < 0.005). There was a significant difference in the oxy-Hb integral values during the activation task period between the depressed and non-depressed groups (3.16 ± 2.7 and 1.71 ± 2.4, respectively; P = 0.040). The results indicated that the patients of the depressed group showed lower oxy-Hb integral values and lower activation in the frontal lobe in comparison with the patients of the non-depressed group. Conclusion: The present study highlights that the measurement of oxy-Hb by using fNIRS is a useful methodology for the diagnosis of PSD in patients after stroke.

3.
Front Hum Neurosci ; 15: 603069, 2021.
Article in English | MEDLINE | ID: mdl-33935666

ABSTRACT

PURPOSE: This study aimed to investigate whether oxygenated hemoglobin (oxy-Hb) generated during a motor imagery (MI) task is associated with the motor learning level of the task. METHODS: We included 16 right-handed healthy participants who were trained to perform a ball rotation (BR) task. Hemodynamic brain activity was measured using near-infrared spectroscopy to monitor changes in oxy-Hb concentration during the BR MI task. The experimental protocol used a block design, and measurements were performed three times before and after the initial training of the BR task as well as after the final training. The BR count during training was also measured. Furthermore, subjective vividness of MI was evaluated three times after NIRS measurement using the Visual Analog Scale (VAS). RESULTS: The results showed that the number of BRs increased significantly with training (P < 0.001). VAS scores also improved with training (P < 0.001). Furthermore, oxy-Hb concentration and the region of interest (ROI) showed a main effect (P = 0.001). An interaction was confirmed (P < 0.001), and it was ascertained that the change in oxy-Hb concentrations due to training was different for each ROI. The most significant predictor of subjective MI vividness was supplementary motor area (SMA) oxy-Hb concentration (coefficient = 0.365). DISCUSSION: Hemodynamic brain activity during MI tasks may be correlated with task motor learning levels, since significant changes in oxy-Hb concentrations were observed following initial and final training in the SMA. In particular, hemodynamic brain activity in the SMA was suggested to reflect the MI vividness of participants.

4.
Neural Regen Res ; 16(12): 2431-2437, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33907031

ABSTRACT

In recent years, mental practice (MP) using laterally inverted video of a subject's non-paralyzed upper limb to improve the vividness of presented motor imagery (MI) has been shown to be effective for improving the function of a paralyzed upper limb. However, no studies have yet assessed the activity of cortical regions engaged during MI task performance using inverse video presentations and neurophysiological indicators. This study sought to investigate changes in MI vividness and hemodynamic changes in the cerebral cortex during MI performance under the following three conditions in near-infrared spectroscopy: MI-only without inverse video presentation (MI-only), MI with action observation (AO) of an inverse video presentation of another person's hand (AO + MI (other hand)), and MI with AO of an inverse video presentation of a participant's own hand (AO + MI (own hand)). Participants included 66 healthy right-handed adults (41 men and 25 women; mean age: 26.3 ± 4.3 years). There were 23 patients in the MI-only group (mean age: 26.4 ± 4.1 years), 20 in the AO + MI (other hand) group (mean age: 25.9 ± 5.0 years), and 23 in the AO + MI (own hand) group (mean age: 26.9 ± 4.1 years). The MI task involved transferring 1 cm × 1 cm blocks from one plate to another, once per second, using chopsticks held in the non-dominant hand. Based on a visual analog scale (VAS), MI vividness was significantly higher in the AO + MI (own hand) group than in the MI-only group and the AO + MI (other hand) group. A main effect of condition was revealed in terms of MI vividness, as well as regions of interest (ROIs) in certain brain areas associated with motor processing. The data suggest that inverse video presentation of a person's own hand enhances the MI vividness and increases the activity of motor-related cortical areas during MI. This study was approved by the Institutional Ethics Committee of Nagasaki University Graduate School of Biomedical and Health Sciences (approval No. 18121303) on January 18, 2019.

5.
Front Hum Neurosci ; 15: 637401, 2021.
Article in English | MEDLINE | ID: mdl-33643014

ABSTRACT

This study aimed to investigate whether the effect of mental practice (motor imagery training) can be enhanced by providing neurofeedback based on transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEP). Twenty-four healthy, right-handed subjects were enrolled in this study. The subjects were randomly allocated into two groups: a group that was given correct TMS feedback (Real-FB group) and a group that was given randomized false TMS feedback (Sham-FB group). The subjects imagined pushing the switch with just timing, when the target circle overlapped a cross at the center of the computer monitor. In the Real-FB group, feedback was provided to the subjects based on the MEP amplitude measured in the trial immediately preceding motor imagery. In contrast, the subjects of the Sham-FB group were provided with a feedback value that was independent of the MEP amplitude. TMS was applied when the target, moving from right to left, overlapped the cross at the center of the screen, and the MEP amplitude was measured. The MEP was recorded in the right first dorsal interosseous muscle. We evaluated the pre-mental practice and post-mental practice motor performance in both groups. As a result, a significant difference was observed in the percentage change of error values between the Real-FB group and the Sham-FB group. Furthermore, the MEP was significantly different between the groups in the 4th and 5th sets. Therefore, it was suggested that TMS-induced MEP-based neurofeedback might enhance the effect of mental practice.

6.
Neural Regen Res ; 16(4): 778-782, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33063742

ABSTRACT

Motor imagery is defined as an act wherein an individual contemplates a mental action of motor execution without apparent action. Mental practice executed by repetitive motor imagery can improve motor performance without simultaneous sensory input or overt output. We aimed to investigate cerebral hemodynamics during motor imagery and motor execution of a self-feeding activity using chopsticks. This study included 21 healthy right-handed volunteers. The self-feeding activity task comprised either motor imagery or motor execution of eating sliced cucumber pickles with chopsticks to examine eight regions of interest: pre-supplementary motor area, supplementary motor area, bilateral prefrontal cortex, premotor area, and sensorimotor cortex. The mean oxyhemoglobin levels were detected using near-infrared spectroscopy to reflect cerebral activation. The mean oxyhemoglobin levels during motor execution were significantly higher in the left sensorimotor cortex than in the supplementary motor area and the left premotor area. Moreover, significantly higher oxyhemoglobin levels were detected in the supplementary motor area and the left premotor area during motor imagery, compared to motor execution. Supplementary motor area and premotor area had important roles in the motor imagery of self-feeding activity. Moreover, the activation levels of the supplementary motor area and the premotor area during motor execution and motor imagery are likely affected by intentional cognitive processes. Levels of cerebral activation differed in some areas during motor execution and motor imagery of a self-feeding activity. This study was approved by the Ethical Review Committee of Nagasaki University (approval No. 18110801) on December 10, 2018.

7.
Front Hum Neurosci ; 14: 581652, 2020.
Article in English | MEDLINE | ID: mdl-33088268

ABSTRACT

The present study aimed to investigate the relationship between motor imagery (MI) assessment (ability and quality) and neurophysiological assessment [transcranial magnetic stimulation (TMS)-induced motor-evoked potentials (MEPs)] during combined MI and action observation (AO; MI + AO). Sixteen subjects completed an MI task playing the piano with both hands, and neurophysiological assessment was performed during the MI task. The Movement Imagery Questionnaire-Revised was adopted to evaluate MI ability, while the visual analogue scale (VAS) was adopted to evaluate MI quality. A TMS pulse was delivered during the MI task, and MEPs were subsequently recorded in the abductor pollicis brevis (APB). We found a significant positive correlation between the VAS score and the TMS-induced MEPs (ρ = 0.497, p < 0.001). These findings suggest that the VAS score could potentially reflect the corticospinal excitability during MI + AO, particularly in complex MI tasks.

8.
Front Hum Neurosci ; 11: 546, 2017.
Article in English | MEDLINE | ID: mdl-29180958

ABSTRACT

Action observation studies have investigated whether changing the speed of the observed movement affects the action observation network. There are two types of speed-changing conditions; one involves "changes in actual movement velocity," and the other is "manipulation of video speed." Previous studies have investigated the effects of these conditions separately, but to date, no study has directly investigated the differences between the effects of these conditions. In the "movement velocity condition," increased velocity is associated with increased muscle activity; however, this change of muscle activities is not shown in the "video speed condition." Therefore, a difference in the results obtained under these conditions could be considered to reflect a difference in muscle activity of actor in the video. The aim of the present study was to investigate the effects of different speed-changing conditions and spontaneous movement tempo (SMT) on the excitability of primary motor cortex (M1) during action observation, as assessed by motor-evoked potentials (MEPs) amplitudes induced by transcranial magnetic stimulation (TMS). A total of 29 healthy subjects observed a video clip of a repetitive index or little finger abduction movement under seven different speed conditions. The video clip in the movement velocity condition showed repetitive finger abduction movements made in time with an auditory metronome, at frequencies of 0.5, 1, 2, and 3 Hz. In the video speed condition, playback of the 1-Hz movement velocity condition video clip was modified to show movement frequencies of 0.5, 2, or 3 Hz (Hz-Fake). TMS was applied at the time of maximal abduction and MEPs were recorded from two right-hand muscles. There were no differences in M1 excitability between the movement velocity and video speed conditions. Moreover, M1 excitability did not vary across the speed conditions for either presentation condition. Our findings suggest that changing playback speed and actual differences in movement velocity do not differentially influence M1 excitability during observation of a simple action task, such as repetitive finger movement, and that it is not affected by SMT. In simple and meaningless observational task, people might not be able to recognize the difference in muscle activity of actor in the video.

9.
J Phys Ther Sci ; 29(8): 1438-1443, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28878479

ABSTRACT

[Purpose] Diffusion tensor imaging (DTI) has attracted attention as a method for determining prognosis following paralysis after stroke. However, DTI can assess the degree of damage to the corticospinal tract but cannot evaluate other brain regions. In this study, we examined in detail the prognosis of upper-limb function of the paralyzed side following stroke, using DTI and voxel-based morphometry (VBM). [Subjects and Methods] We studied 17 consecutive patients diagnosed with stroke, including hemorrhagic and ischemic types, who exhibited hemiparesis and were treated in our hospital. DTI and VBM were performed 14 days after admission. Outcome measurements that assessed upper limb function were Fugl-Meyer Assessment (FMA) and Motor Activity Log (MAL), which were applied after 3 months. [Results] The fractional anisotropy ratio of the bilateral cerebral peduncles (rFA) was significantly correlated with FMA, amount of use, and quality of movement 3 months after stroke. The precentral gyrus significantly degenerated as compared with the control group for a case with notable motor paralysis, for which rFA was high. [Conclusion] We suggest it may be possible to predict recovery of upper limb function following stroke by combining DTI and VBM visualization methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...