Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Neurobiol ; 43(8): 4345-4362, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37934363

ABSTRACT

Neuromodulation through magnetic fields irradiation with ait® (AT-04), a device that irradiates a mixed alternating magnetic fields (2 kHz and 83.3 MHz), has been shown to have high efficacy for fibromyalgia and low back pain in our previous clinical trials. The aim of this study was to elucidate the underlying analgesic mechanism of the AT-04 using the partial sciatic nerve ligation (PSL) model as an animal model of neuropathic pain. AT-04 was applied to PSL model rats with hyperalgesia and its pain-improving effect was verified by examining mechanical allodynia using the von Frey method. The results demonstrated a significant improvement in hyperalgesia in PSL model rats. We also examined the involvement of descending pain modulatory systems in the analgesic effects of AT-04 using antagonism by serotonin and noradrenergic receptor antagonists. These antagonists significantly reduced the analgesic effect of AT-04 on pain in PSL model rats by approximately 50%. We also measured the amount of serotonin and noradrenaline in the spinal fluid of PSL model rats using microdialysis during AT-04 treatment. Both monoamines were significantly increased by magnetic fields irradiation with AT-04. Furthermore, we evaluated the involvement of opioid analgesia in the analgesic effects of AT-04 using naloxone, the main antagonist of the opioid receptor, and found that it significantly antagonized the effects by approximately 60%. Therefore, the analgesic effects of AT-04 in PSL model rats involve both the endogenous pain modulation systems, including the descending pain modulatory system and the opioid analgesic system.


Subject(s)
Analgesia , Neuralgia , Rats , Animals , Hyperalgesia/complications , Hyperalgesia/drug therapy , Analgesics, Opioid/therapeutic use , Serotonin , Pain Measurement , Neuralgia/drug therapy , Analgesics/pharmacology , Disease Models, Animal
2.
Bioorg Med Chem ; 23(24): 7543-64, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26585275

ABSTRACT

Inhibition of the enzymatic activity of histone deacetylase (HDAC) is a promising therapeutic strategy for cancer treatment and several distinct small molecule histone deacetylase inhibitors (HDACi) have been reported. We have previously identified a new class of non-peptide macrocyclic HDACi derived from 14- and 15-membered macrolide skeletons. In these HDACi, the macrocyclic ring is linked to the zinc chelating hydroxamate moiety through a para-substituted aryl-triazole cap group. To further delineate the depth of the SAR of this class of HDACi, we have synthesized series of analogous compounds and investigated the influence of various substitution patterns on their HDAC inhibitory, anti-proliferative and anti-inflammatory activities. We identified compounds 25b and 38f with robust anti-proliferative activities and compound 26f (IC50 47.2 nM) with superior anti-inflammatory (IC50 88 nM) activity relative to SAHA.


Subject(s)
Anti-Inflammatory Agents/chemistry , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Histone Deacetylase Inhibitors/chemistry , Macrolides/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Histone Deacetylase Inhibitors/pharmacology , Humans , Macrolides/pharmacology , Neoplasms/drug therapy , Structure-Activity Relationship , Vero Cells
3.
J Biol Chem ; 289(26): 18097-109, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24821721

ABSTRACT

Single immunoglobulin interleukin-1 receptor-related molecule (SIGIRR) is one of the immunoglobulin-like membrane proteins that is crucial for negative regulation of toll-like receptor 4 (TLR4) and interleukin-1 receptor. Despite the importance of understanding its expression and function, knowledge is limited on the regulatory mechanism in the epithelial tissues, such as the liver, lung, and gut, where its predominant expression is originally described. Here, we found expression of SIGIRR in non-epithelial innate immune cells, including primary peripheral blood monocytes, polymorphonuclear neutrophils, monocytic RAW264 cells, and neutrophilic-differentiated HL-60 cells. Consistent with previous findings in epithelial tissues, SIGIRR gene and protein expression were also down-regulated by LPS treatment in a time-dependent manner in primary blood monocytes and polymorphonuclear neutrophils. A reduction was also observed in RAW264 and differentiated HL-60 cells. Notably, exogenous introduction of the dominant negative form of TLR4 and siRNA of p38 resulted in inhibition of LPS-induced SIGIRR down-regulation, whereas treatment with p38 activator anisomycin showed a dose-dependent decrease in SIGIRR expression, suggesting TLR4-p38 signal as a critical pathway for LPS-induced SIGIRR down-regulation. Finally, reporter gene and chromatin immunoprecipitation assays demonstrated that Sp1 is a key factor that directly binds to the proximal promoter of SIGIRR gene and consequently regulates basal SIGIRR expression, which is negatively regulated by the LPS-dependent TLR4-p38 pathway. In summary, the data precisely demonstrate how LPS down-regulates SIGIRR expression and provide a role of LPS signal that counteracts Sp1-dependent basal promoter activation of SIGIRR gene via TLR4-p38 pathway in non-epithelial innate immune cells.


Subject(s)
Lipopolysaccharides/metabolism , MAP Kinase Signaling System , Monocytes/metabolism , Neutrophils/metabolism , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Sp1 Transcription Factor/genetics , Toll-Like Receptor 4/metabolism , Animals , Base Sequence , Down-Regulation , Humans , Mice , Mice, Inbred C3H , Molecular Sequence Data , Promoter Regions, Genetic , Sp1 Transcription Factor/metabolism , Toll-Like Receptor 4/genetics
4.
J Biol Chem ; 288(22): 16117-26, 2013 May 31.
Article in English | MEDLINE | ID: mdl-23599430

ABSTRACT

Exogenous low-intensity electrical stimulation has been used for treatment of various intractable diseases despite the dearth of information on the molecular underpinnings of its effects. Our work and that of others have demonstrated that applied electrical stimulation at physiological strength or mild electrical stimulation (MES) activates the PI3K-Akt pathway, but whether MES activates other molecules remains unknown. Considering that MES is a form of physiological stress, we hypothesized that it can activate the tumor suppressor p53, which is a key modulator of the cell cycle and apoptosis in response to cell stresses. The potential response of p53 to an applied electrical current of low intensity has not been investigated. Here, we show that p53 was transiently phosphorylated at Ser-15 in epithelial cells treated with an imperceptible voltage (1 V/cm) and a 0.1-ms pulse width. MES-induced p53 phosphorylation was inhibited by pretreatment with a p38 MAPK inhibitor and transfection of dominant-negative mutants of p38, MKK3b, and MKK6b, implying the involvement of the p38 MAPK signaling pathway. Furthermore, MES treatment enhanced p53 transcriptional function and increased the expression of p53 target genes p21, BAX, PUMA, NOXA, and IRF9. Importantly, MES treatment triggered G2 cell cycle arrest, but not cell apoptosis. MES treatment had no effect on the cell cycle in HCT116 p53(-/-) cells, suggesting a dependence on p53. These findings identify some molecular targets of electrical stimulation and incorporate the p38-p53 signaling pathway among the transduction pathways that MES affects.


Subject(s)
G2 Phase Cell Cycle Checkpoints , Gene Expression Regulation , MAP Kinase Signaling System , Tumor Suppressor Protein p53/metabolism , Electric Stimulation , Epithelial Cells , HEK293 Cells , Hep G2 Cells , Humans , MAP Kinase Kinase 3/genetics , MAP Kinase Kinase 3/metabolism , MAP Kinase Kinase 6/genetics , MAP Kinase Kinase 6/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Tumor Suppressor Protein p53/genetics , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...