Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 660, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959822

ABSTRACT

Annual rings record the intensity of cosmic rays (CRs) that had entered into the Earth's atmosphere. Several rapid 14C increases in the past, such as the 775 CE and 994CE 14C spikes, have been reported to originate from extreme solar proton events (SPEs). Another rapid 14C increase, also known as the ca. 660 BCE event in German oak tree rings as well as increases of 10Be and 36Cl in ice cores, was presumed similar to the 775 CE event; however, as the 14C increase of approximately 10‰ in 660 BCE had taken a rather longer rise time of 3-4 years as compared to that of the 775 CE event, the occurrence could not be simply associated to an extreme SPE. In this study, to elucidate the rapid increase in 14C concentrations in tree rings around 660 BCE, we have precisely measured the 14C concentrations of earlywoods and latewoods inside the annual rings of Japanese cedar for the period 669-633 BCE. Based on the feature of 14C production rate calculated from the fine measured profile of the 14C concentrations, we found that the 14C rapid increase occurred within 665-663.5 BCE, and that duration of 14C production describing the event is distributed from one month to 41 months. The possibility of occurrence of consecutive SPEs over up to three years is offered.

2.
Anal Chem ; 80(5): 1552-7, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18232669

ABSTRACT

A new method that can chemically discriminate the visually indistinguishable sapwood from heartwood in discolored woods is presented in this paper. Discriminating between sapwood and heartwood, which are normally recognized by color in cross sections of stems of tress, is important in dendrochronological dating, as well as in evaluating qualities of woods such as durability. In tree-ring chronology, the felling date, which affects the construction date of architectures, can be estimated only in woods that have a recognizable sapwood/heartwood boundary. However, the felling date cannot be estimated in discolored woods because it has indistinguishable sapwood. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis of specific chemical substances retained for approximately 1300 years after felling demonstrated the presence of sapwood in a discolored ancient architectural wood of Hinoki cypress (Chamaecyparis obtusa). Direct molecular mapping by TOF-SIMS clearly indicated that the specific substances, hinokinin, hinokiresinol, hinokione, and hinokiol, started to accumulate at the sapwood/heartwood boundary where only hinokinin was localized and retained predominantly in ray parenchyma cells. The result allowed the determination of the felling date of the discolored wood. TOF-SIMS has shown to be useful for investigating the distribution of minute amounts of chemical components in woods.


Subject(s)
Chamaecyparis/chemistry , Mass Spectrometry/methods , Wood/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...