Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 12(1): e15907, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38226411

ABSTRACT

Spectral analysis of heart rate variability (HRV) is used to assess cardiovascular autonomic function. In the power density spectrum calculated from a time series of the R-R interval (RRI), three main components are distinguished: very-low-frequency (VLF; 0.003-0.04 Hz), low-frequency (LF; 0.04-0.15 Hz), and high-frequency (HF; 0.15-0.4 Hz) components. However, the physiological correlates of these frequency components have yet to be determined. In this study, we conducted spectral analysis of data segments of various lengths (5, 30, 100, and 200 s) of the RRI time series during active standing. Because of the trade-off relationship between time and frequency resolution, the analysis of the RRI data segment shorter than 30 s was needed to identify the temporal relationships between individual transient increases in RRI and the resulting spectral power changes. In contrast, the segment of 200 s was needed to properly evaluate the magnitude of the increase in the VLF power. The results showed that a transient increase in the RRI was tightly associated with simultaneous increases in the powers of the VLF, LF, and HF components. We further found that the simultaneous power increases in these three components were caused by the arterial baroreceptor reflex responding to rapid blood pressure rise.


Subject(s)
Autonomic Nervous System , Electrocardiography , Heart Rate/physiology , Pilot Projects , Electrocardiography/methods , Heart , Blood Pressure/physiology
2.
Physiol Rep ; 11(2): e15557, 2023 01.
Article in English | MEDLINE | ID: mdl-36702497

ABSTRACT

Spectral analysis of heart rate variability (HRV) is widely used as a non-invasive method to assess the cardiovascular autonomic function. Of the two main frequency components of HRV, namely low-frequency (LF, 0.04-0.15 Hz) and high-frequency (HF, 0.15-0.4 Hz) components, it is generally accepted that the HF power reflects modulation of heart rate which is mediated by cardiac parasympathetic (vagal) nerve activity. In contrast, the origin and functional correlates of the LF component are still controversial. Although several lines of evidence have indicated a close correlation between LF power and the baroreflex modulation of autonomic outflows, the detailed mechanisms underlying the genesis of the LF component remain unclarified. In this study, we conducted an ultra-short-term (UST) spectral analysis of R-R interval (RRI) time series using Fast Fourier Transform (FFT) with 5- and 25-s windows to clarify the temporal relationships among transient changes in the RRI and, LF and HF powers in healthy subjects. We found that during active standing, transient RRI increases occurred sporadically. The UST spectral analysis revealed that this RRI increase was associated with a simultaneous increase in HF power which was closely linked to the prominent LF power increase. These results indicate that during active standing, increases in LF and HF powers occur simultaneously, and they may reflect enhanced cardiac vagal activity which generates transient bradycardia.


Subject(s)
Autonomic Nervous System Diseases , Cardiovascular System , Humans , Heart Rate/physiology , Autonomic Nervous System/physiology , Heart , Electrocardiography
3.
Neuroimage ; 37 Suppl 1: S27-36, 2007.
Article in English | MEDLINE | ID: mdl-17574868

ABSTRACT

BACKGROUND: Mechanisms of neurovascular coupling-the relationship between neuronal chemoelectrical activity and compensatory metabolic and hemodynamic changes-appear to be preserved across species from rats to humans despite differences in scale. However, previous work suggests that the highly cellular dense mouse somatosensory cortex has different functional hemodynamic changes compared to other species. METHODS: We developed novel hardware and software for 2-dimensional optical spectroscopy (2DOS). Optical changes at four simultaneously recorded wavelengths were measured in both rat and mouse primary somatosensory cortex (S1) evoked by forepaw stimulation to create four spectral maps. The spectral maps were converted to maps of deoxy-, oxy-, and total-hemoglobin (HbR, HbO, and HbT) concentration changes using the modified Beer-Lambert law and phantom HbR and HbO absorption spectra. RESULTS: : Functional hemodynamics were different in mouse versus rat neocortex. On average, hemodynamics were as expected in rat primary somatosensory cortex (S1): the fractional change in the log of HbT concentration increased monophasically 2 s after stimulus, whereas HbO changes mirrored HbR changes, with HbO showing a small initial dip at 0.5 s followed by a large increase 3.0 s post stimulus. In contrast, mouse S1 showed a novel type of stimulus-evoked hemodynamic response, with prolonged, concurrent, monophasic increases in HbR and HbT and a parallel decrease in HbO that all peaked 3.5-4.5 s post stimulus onset. For rats, at any given time point, the average size and shape of HbO and HbR forepaw maps were the same, whereas surface veins distorted the shape of the HbT map. For mice, HbO, HbR, and HbT forepaw maps were generally the same size and shape at any post-stimulus time point. CONCLUSIONS: 2DOS using image splitting optics is feasible across species for brain mapping and quantifying the map topography of cortical hemodynamics. These results suggest that during physiologic stimulation, different species and/or cortical architecture may give rise to different hemodynamic changes during neurovascular coupling.


Subject(s)
Hemoglobins/metabolism , Oxyhemoglobins/metabolism , Somatosensory Cortex/physiology , Algorithms , Animals , Brain Chemistry/physiology , Brain Mapping , Cerebrovascular Circulation , Efferent Pathways/anatomy & histology , Efferent Pathways/physiology , Electric Stimulation , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Species Specificity
4.
AMIA Annu Symp Proc ; : 1112, 2005.
Article in English | MEDLINE | ID: mdl-16779399

ABSTRACT

We developed a decision support system that helps doctors select appropriate first-line drugs. The system classifies patients' abilities to protect themselves from infectious diseases as a risk level for infection. In an evaluation of the prototype system, the risk level it determined correlated with the decisions of specialists. The system is very effective and convenient for doctors to use.


Subject(s)
Communicable Diseases/drug therapy , Decision Support Systems, Clinical , Drug Therapy, Computer-Assisted , Humans
5.
Atherosclerosis ; 169(1): 105-12, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12860256

ABSTRACT

Recently, variants in ATP-binding cassette transporter A1 (ABCA1) were demonstrated to be associated with increased level of high density lipoprotein cholesterol (HDL-C) and decreased risk of coronary artery disease (CAD) in Caucasians. However, this is not universally applicable due to the ethnic or environmental differences. In this context, to clarify the effect of ABCA1 in Japanese, we evaluated the phenotypic effects of I/M 823 and R/K 219 variants on the plasma level of HDL-C in 410 patients recruited in our hospital. Subjects with M 823 allele had significantly higher level of HDL-C than those without M823 allele (49.0+/-15.1 vs. 44.9+/-11.5 mg/dl, respectively, P<0.05). This statistical significance did not change even after multiple regression analysis. In contrast, there was no difference in HDL-C level among the genotypes in R/K 219 polymorphism. Further, in our study population an inverse relationship was shown to exist between HDL-C level and incidence of CAD. However, no positive association was observed between those variants and susceptibility to CAD. In this study, we provide evidence that I/M 823 variant, not R/K 219 variant, in ABCA1 is one of the determinants of HDL-C level, suggesting the importance of this gene on lipid metabolism in Japanese.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Cholesterol, HDL/blood , Polymorphism, Genetic , ATP Binding Cassette Transporter 1 , Adult , Aged , Aged, 80 and over , Alleles , Coronary Disease/ethnology , Coronary Disease/genetics , Female , Genetic Predisposition to Disease , Genotype , Humans , Hyperlipidemias/blood , Hyperlipidemias/genetics , Japan , Linkage Disequilibrium , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...