Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 21(1): 170, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32070289

ABSTRACT

BACKGROUND: To date, four thrips vectors have been reported to transmit five different tospoviruses in India. Their identification at an early stage is crucial in formulating appropriate pest management strategies. Since morphometric key-based thrips identification based on the adult stage is time-consuming, there is a need to develop diagnostic tools which are rapid, accurate, and independent of developmental stages. Here, we report a multiplex PCR assay to identify four major thrips vectors viz. Thrips palmi, T. tabaci, Scirtothrips dorsalis, and Frankliniella schultzei present in India. RESULTS: Cytochrome oxidase subunit III and internal transcribed spacer region 2 were utilized to design species-specific primers. Of 38 pairs of primers tested, primer pairs AG35F-AG36R, AG47F-AG48R, AG87F-AG88R, and AG79F-AG80R amplified 568 bp, 713 bp, 388 bp, and 200 bp products from the DNA templates of T. palmi, S. dorsalis, T. tabaci, and F. schultzei, respectively at same PCR conditions. The specificity of the primer pairs was validated with a large number of known specimens and no cross-reactivity was observed with other thrips species. The multiplex PCR assay with a cocktail of all the four primer pairs detected four thrips vectors efficiently and could discriminate all of them concurrently in a single reaction. CONCLUSION: The multiplex PCR reported in this study could identify the major thrips vectors reported in India. The assay will be useful in ascertaining distribution profile of major thrips vectors, disease epidemiology, screening large samples, and quarantine.


Subject(s)
Disease Vectors/classification , Multiplex Polymerase Chain Reaction , Thysanoptera/classification , Thysanoptera/genetics , Tospovirus , Animals , Electron Transport Complex IV/genetics , India , Reproducibility of Results , Thysanoptera/virology
2.
BMJ Paediatr Open ; 2(1): e000319, 2018.
Article in English | MEDLINE | ID: mdl-30555935

ABSTRACT

INTRODUCTION: In last few years, several studies have revealed the remarkable stability of extracellular microRNAs (miRNAs) circulating in the blood or excreted in the urine and underscored their key importance as biomarkers of certain diseases. Since miRNA in urinary sediment is relatively stable and easily quantified, it has the potential to be developed as a biomarker for disease diagnosis and monitoring. Identification of serum and urinary levels of certain miRNAs may assist in the diagnosis and assessment of disease activity in patients with nephrotic syndrome (NS). The global expression profile of miRNAs in childhood NS in Indian population remains unknown. Hence, further research is warranted in this area. This study seeks to prospectively evaluate whether a multipronged multiomics approach concentrating on microRNA expression profiles in children with NS vis-a-vis normal healthy children is discriminant enough to predict steroid responsiveness in childhood NS. METHODS AND ANALYSIS: In this prospective multicentric cohort study, subjects will be recruited from general paediatric and paediatric nephrology outpatient departments (OPDs) in tertiary care level referral hospitals. Age-matched and sex-matched healthy individuals with normal renal function (as assessed by normal serum creatinine and normal ultrasound of kidneys, ureter and bladder) in 1:1 ratio between study and control groups will be recruited from among the healthy siblings of children presenting to the OPDs. Differential microRNA expression profiles in urine and serum samples of children with steroid-sensitive NS (SSNS) and steroid-resistant NS (SRNS) with healthy children will be compared in a two-phased manner: a biomarker discovery phase involving pooled samples across SSNS, SRNS and healthy siblings analysed in triplicate using next-generation sequencing, slide microarray and quantitative reverse transcriptase PCR (qRT-PCR) arrays covering human miRNome followed by a validation phase with customised qRT-PCR primers based on the concordance in the discovery phase differential expression profiles and bioinformatics analysis. ETHICS AND DISSEMINATION: The study is funded after dueInstitutional Ethics Committee (IEC) clearance, and results will be available as open access.

SELECTION OF CITATIONS
SEARCH DETAIL
...