Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Lung India ; 40(5): 462-464, 2023.
Article in English | MEDLINE | ID: mdl-37787362

ABSTRACT

Diaphragm eventration is a rare permanent abnormal elevation of diaphragmatic muscles. They are rare entities with right-sided eventration occurring rarer still. We present a case of a 69-year-old male with right-sided hemidiaphragmatic eventration and post-COVID 19 pulmonary fibrotic changes.

2.
Small ; 19(7): e2206249, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36436829

ABSTRACT

Transient batteries are expected to lessen the inherent environmental impact of traditional batteries that rely on toxic and critical raw materials. This work presents the bottom-up design of a fully transient Zn-ion battery (ZIB) made of nontoxic and earth-abundant elements, including a novel hydrogel electrolyte prepared by cross-linking agarose and carboxymethyl cellulose. Facilitated by a high ionic conductivity and a high positive zinc-ion species transference number, the optimized hydrogel electrolyte enables stable cycling of the Zn anode with a lifespan extending over 8500 h for 0.25 mA cm-2 - 0.25 mAh cm-2 . On pairing with a biocompatible organic polydopamine-based cathode, the full cell ZIB delivers a capacity of 196 mAh g-1 after 1000 cycles at a current density of 0.5 A g-1 and a capacity of 110 mAh g-1 after 10 000 cycles at a current density of 1 A g-1 . A transient ZIB with a biodegradable agarose casing displays an open circuit voltage of 1.123 V and provides a specific capacity of 157 mAh g-1 after 200 cycles at a current density of 50 mA g-1 . After completing its service life, the battery can disintegrate under composting conditions.

3.
Small ; 18(43): e2107183, 2022 10.
Article in English | MEDLINE | ID: mdl-35224853

ABSTRACT

Sodium ion batteries (NIBs) based on earth-abundant materials offer efficient, safe, and environmentally sustainable solutions for a decarbonized society. However, to compete with mature energy storage technologies such as lithium ion batteries, further progress is needed, particularly regarding the energy density and operational lifetime. Considering these aspects as well as a circular economy perspective, the authors use biodegradable cellulose nanoparticles for the preparation of a gel polymer electrolyte that offers a high liquid electrolyte uptake of 2985%, an ionic conductivity of 2.32 mS cm-1 , and a Na+ transference number of 0.637. A balanced ratio of mechanically rigid cellulose nanocrystals and flexible cellulose nanofibers results in a mesoporous hierarchical structure that ensures close contact with metallic Na. This architecture offers stable Na plating/stripping at current densities up to ±500 µA cm-2 , outperforming conventional fossil-based NIBs containing separator-liquid electrolytes. Paired with an environmentally sustainable and economically attractive Na2 Fe2 (SO4 )3 cathode, the battery reaches an energy density of 240 Wh kg-1 , delivering 69.7 mAh g-1 after 50 cycles at a rate of 1C. In comparison, Celgard in liquid electrolyte delivers only 0.6 mAh g-1 at C/4. Such gel polymer electrolytes may open up new opportunities for sustainable energy storage systems beyond lithium ion batteries.


Subject(s)
Lithium , Sodium , Lithium/chemistry , Sodium/chemistry , Polymers , Electroplating , Electrolytes/chemistry , Ions , Cellulose/chemistry
4.
Chimia (Aarau) ; 76(4): 298-302, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-38069767

ABSTRACT

Transient electronics is an emerging class of innovative technology wherein electronic devices undergo controlled degradation processes after a period of stable operation, leaving no toxic products behind. This technology offers exciting opportunities in research areas of green electronics, temporary biomedical implants, data-secure hardware systems, and many others. However, one major challenge with these devices is their rigid and bulky batteries that contain toxic chemicals and are not at all degradable. So, to realize autonomous and self-sufficient transient electronics, the development of transient batteries is a pre-requisite. This review provides an overview of the advancements in the field of transient batteries, their materials, output performance, transience behaviour, and a few potential applications.

5.
Adv Sci (Weinh) ; 8(12): 2004814, 2021 06.
Article in English | MEDLINE | ID: mdl-34194934

ABSTRACT

Transient technology seeks the development of materials, devices, or systems that undergo controlled degradation processes after a stable operation period, leaving behind harmless residues. To enable externally powered fully transient devices operating for longer periods compared to passive devices, transient batteries are needed. Albeit transient batteries are initially intended for biomedical applications, they represent an effective solution to circumvent the current contaminant leakage into the environment. Transient technology enables a more efficient recycling as it enhances material retrieval rates, limiting both human and environmental exposures to the hazardous pollutants present in conventional batteries. Little efforts are focused to catalog and understand the degradation characteristics of transient batteries. As the energy field is a property-driven science, not only electrochemical performance but also their degradation behavior plays a pivotal role in defining the specific end-use applications. The state-of-the-art transient batteries are critically reviewed with special emphasis on the degradation mechanisms, transiency time, and biocompatibility of the released degradation products. The potential of transient batteries to change the current paradigm that considers batteries as harmful waste is highlighted. Overall, transient batteries are ready for takeoff and hold a promising future to be a frontrunner in the uptake of circular economy concepts.

6.
ACS Appl Mater Interfaces ; 13(18): 21250-21260, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33914505

ABSTRACT

Developing efficient energy storage technologies is at the core of current strategies toward a decarbonized society. Energy storage systems based on renewable, nontoxic, and degradable materials represent a circular economy approach to address the environmental pollution issues associated with conventional batteries, that is, resource depletion and inadequate disposal. Here we tap into that prospect using a marine biopolymer together with a water-soluble polymer to develop sodium ion battery (NIB) separators. Mesoporous membranes comprising agarose, an algae-derived polysaccharide, and poly(vinyl alcohol) are synthesized via nonsolvent-induced phase separation. Obtained membranes outperform conventional nondegradable NIB separators in terms of thermal stability, electrolyte wettability, and Na+ conductivity. Thanks to the good interfacial adhesion with metallic Na promoted by the hydroxyl and ether functional groups of agarose, the separators enable a stable and homogeneous Na deposition with limited dendrite growth. As a result, membranes can operate at 200 µA cm-2, in contrast with Celgard and glass microfiber, which short circuit at 50 and 100 µA cm-2, respectively. When evaluated in Na3V2(PO4)3/Na half-cells, agarose-based separators deliver 108 mA h g-1 after 50 cycles at C/10, together with a remarkable rate capability. This work opens up new possibilities for the use of water-degradable separators, reducing the environmental burdens arising from the uncontrolled accumulation of electronic waste in marine or land environments.

7.
ACS Cent Sci ; 7(2): 231-244, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33655063

ABSTRACT

The primary task of a battery is to store energy and to power electronic devices. This has hardly changed over the years despite all the progress made in improving their electrochemical performance. In comparison to batteries, electronic devices are continuously equipped with new functions, and they also change their physical appearance, becoming flexible, rollable, stretchable, or maybe transparent or even transient or degradable. Mechanical flexibility makes them attractive for wearable electronics or for electronic paper; transparency is desired for transparent screens or smart windows, and degradability or transient properties have the potential to reduce electronic waste. For fully integrated and self-sufficient systems, these devices have to be powered by batteries with similar physical characteristics. To make the currently used rigid and heavy batteries flexible, transparent, and degradable, the whole battery architecture including active materials, current collectors, electrolyte/separator, and packaging has to be redesigned. This requires a fundamental paradigm change in battery research, moving away from exclusively addressing the electrochemical aspects toward an interdisciplinary approach involving chemists, materials scientists, and engineers. This Outlook provides an overview of the different activities in the field of flexible, transient, and transparent batteries with a focus on the challenges that have to be faced toward the development of such multifunctional energy storage devices.

8.
Nanoscale ; 10(45): 21396-21405, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30427026

ABSTRACT

Despite extensive use of Pd nanocrystals as catalysts, the realization of a Pd-based continuous flow reactor remains a challenge. Difficulties arise due to ill-defined anchoring of the nanocrystals on a substrate and reactivity of the substrate under different reaction conditions. We demonstrate the first metal (Pd) nanowire-based catalytic flow reactor that can be used across different filtration platforms, wherein, reactants flow through a porous network of nanowires (10-1000 nm pore sizes) and the product can be collected as filtrate. Controlling the growth parameters and obtaining high aspect ratio of the nanowires (diameter = ∼13 nm and length > 8000 nm) is necessary for successful fabrication of this flow reactor. The reactor performance is similar to a conventional reactor, but without requiring energy-expensive mechanical stirring. Synchrotron-based EXAFS studies were used to examine the catalyst microstructure and Operando FT-IR spectroscopic studies were used to devise a regenerative strategy. We show that after prolonged use, the catalyst performance can be regenerated up to 99% by a simple wash-off process without disturbing the catalyst bed. Thus, collection, regeneration and redispersion processes of the catalyst in conventional industrial reactors can be avoided. Another important advantage is avoiding specific catalyst-anchoring substrates, which are not only expensive, but also non-universal in nature.

9.
Saudi J Kidney Dis Transpl ; 23(4): 810-2, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22805397

ABSTRACT

The most common primary malignant renal tumor is renal cell carcinoma (RCC), which accounts for 3% of all adult malignancies. Bellini duct carcinoma or collecting duct carcinoma is an unusual rare variant of RCC. This histologically distinct tumor is very rare, with less than 100 cases reported in the literature, and accounts for approximately 1% of all malignant renal epithelial tumors. We report two cases of collecting duct carcinoma and highlight the rarity of these tumors and their similarity to RCC.


Subject(s)
Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Kidney Tubules, Collecting , Bone Neoplasms/secondary , Carcinoma, Renal Cell/secondary , Fatal Outcome , Humans , Lung Neoplasms/secondary , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...