Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38376386

ABSTRACT

We report on a lightwave-driven scanning tunneling microscope based on a home-built microscope and a compact, commercial, and cost-effective terahertz-generation unit with a repetition rate of 100 MHz. The measurements are performed in an ultrahigh vacuum at temperatures between 8.5 and 300 K. The cross-correlation of the pump and probe pulses indicates a temporal resolution on the order of a picosecond. In terms of spatial resolution, CO molecules, step edges, and atomically resolved terraces are readily observed in terahertz images, with sometimes better contrast than in the topographic and (DC) current channels. The utilization of a compact, turn-key terahertz-generation system requires only limited experience with optics and terahertz generation, which may facilitate the deployment of the technique to further research groups.

2.
Nat Commun ; 14(1): 7493, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980430

ABSTRACT

Strong circularly polarized excitation opens up the possibility to generate and control effective magnetic fields in solid state systems, e.g., via the optical inverse Faraday effect or the phonon inverse Faraday effect. While these effects rely on material properties that can be tailored only to a limited degree, plasmonic resonances can be fully controlled by choosing proper dimensions and carrier concentrations. Plasmon resonances provide new degrees of freedom that can be used to tune or enhance the light-induced magnetic field in engineered metamaterials. Here we employ graphene disks to demonstrate light-induced transient magnetic fields from a plasmonic circular current with extremely high efficiency. The effective magnetic field at the plasmon resonance frequency of the graphene disks (3.5 THz) is evidenced by a strong ( ~ 1°) ultrafast Faraday rotation ( ~ 20 ps). In accordance with reference measurements and simulations, we estimated the strength of the induced magnetic field to be on the order of 0.7 T under a moderate pump fluence of about 440 nJ cm-2.

3.
Small ; 19(11): e2204850, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36642858

ABSTRACT

Three-dimensional topological insulators (3D TI) exhibit conventional parabolic bulk bands and protected Dirac surface states. A thorough investigation of the different transport channels provided by the bulk and surface carriers using macroscopic samples may provide a path toward accessing superior surface transport properties. Bi2 Te3 materials make promising 3D TI models; however, due to their complicated defect chemistry, these materials have a high number of charge carriers in the bulk that dominate the transport, even as nanograined structures. To partially control the bulk charge carrier density, herein the synthesis of Te-enriched Bi2 Te3 nanoparticles is reported. The resulting nanoparticles are compacted into nanograined pellets of varying porosity to tailor the surface-to-volume ratio, thereby emphasizing the surface transport channels. The nanograined pellets are characterized by a combination of resistivity, Hall- and magneto-conductance measurements together with (THz) time-domain reflectivity measurements. Using the Hikami-Larkin-Nagaoka (HLN) model, a characteristic coherence length of ≈200 nm is reported that is considerably larger than the diameter of the nanograins. The different contributions from the bulk and surface carriers are disentangled by THz spectroscopy, thus emphasizing the dominant role of the surface carriers. The results strongly suggest that the surface transport carriers have overcome the hindrance imposed by nanoparticle boundaries.

4.
Small ; 17(42): e2103281, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34545684

ABSTRACT

3D topological insulators (TI) host surface carriers with extremely high mobility. However, their transport properties are typically dominated by bulk carriers that outnumber the surface carriers by orders of magnitude. A strategy is herein presented to overcome the problem of bulk carrier domination by using 3D TI nanoparticles, which are compacted by hot pressing to macroscopic nanograined bulk samples. Bi2 Te3 nanoparticles well known for their excellent thermoelectric and 3D TI properties serve as the model system. As key enabler for this approach, a specific synthesis is applied that creates nanoparticles with a low level of impurities and surface contamination. The compacted nanograined bulk contains a high number of interfaces and grain boundaries. Here it is shown that these samples exhibit metallic-like electrical transport properties and a distinct weak antilocalization. A downward trend in the electrical resistivity at temperatures below 5 K is attributed to an increase in the coherence length by applying the Hikami-Larkin-Nagaoka model. THz time-domain spectroscopy reveals a dominance of the surface transport at low frequencies with a mobility of above 103 cm2 V-1 s-1 even at room temperature. These findings clearly demonstrate that nanograined bulk Bi2 Te3 features surface carrier properties that are of importance for technical applications.

5.
Sci Adv ; 7(15)2021 Apr.
Article in English | MEDLINE | ID: mdl-33827824

ABSTRACT

Graphene is conceivably the most nonlinear optoelectronic material we know. Its nonlinear optical coefficients in the terahertz frequency range surpass those of other materials by many orders of magnitude. Here, we show that the terahertz nonlinearity of graphene, both for ultrashort single-cycle and quasi-monochromatic multicycle input terahertz signals, can be efficiently controlled using electrical gating, with gating voltages as low as a few volts. For example, optimal electrical gating enhances the power conversion efficiency in terahertz third-harmonic generation in graphene by about two orders of magnitude. Our experimental results are in quantitative agreement with a physical model of the graphene nonlinearity, describing the time-dependent thermodynamic balance maintained within the electronic population of graphene during interaction with ultrafast electric fields. Our results can serve as a basis for straightforward and accurate design of devices and applications for efficient electronic signal processing in graphene at ultrahigh frequencies.

7.
Phys Rev Lett ; 119(6): 067405, 2017 Aug 11.
Article in English | MEDLINE | ID: mdl-28949645

ABSTRACT

Recent pump-probe experiments performed on graphene in a perpendicular magnetic field have revealed carrier relaxation times ranging from picoseconds to nanoseconds depending on the quality of the sample. To explain this surprising behavior, we propose a novel symmetry-breaking defect-assisted relaxation channel. This enables scattering of electrons with single out-of-plane phonons, which drastically accelerate the carrier scattering time in low-quality samples. The gained insights provide a strategy for tuning the carrier relaxation time in graphene and related materials by orders of magnitude.

8.
Opt Express ; 25(11): 12666-12674, 2017 May 29.
Article in English | MEDLINE | ID: mdl-28786621

ABSTRACT

Two-dimensional black phosphorus is a new material that has gained widespread interest as an active material for optoelectronic applications. It features high carrier mobility that allows for efficient free-carrier absorption of terahertz radiation, even though the photon energy is far below the bandgap energy. Here we present an efficient and ultrafast terahertz detector, based on exfoliated multilayer flakes of black phosphorus. The device responsivity is about 1 mV/W for a 2.5 THz beam with a diameter of 200 µm, and is primarily limited by the small active area of the device in comparison to the incident beam area. The intrinsic responsivity is determined by Joule heating experiments to be about 44 V/W, which is in agreement with predictions from the Drude conductivity model. Time resolved measurements at a frequency of 0.5 THz reveal an ultrafast response time of 20 ps, making black phosphorus a candidate for high performance THz detection at room temperature.

9.
Nano Lett ; 17(9): 5811-5816, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28820599

ABSTRACT

Photoconductive antennas are widely used for time-resolved detection of terahertz (THz) pulses. In contrast to photothermoelectric or bolometric THz detection, the coherent detection allows direct measurement of the electric field transient of a THz pulse, which contains both spectral and phase information. In this Letter, we demonstrate for the first time photoconductive detection of free-space propagating THz radiation with thin flakes of a van der Waals material. Mechanically exfoliated flakes of black phosphorus are combined with an antenna that concentrates the THz fields to the small flake (∼10 µm). Similar performance is reached at gating wavelengths of 800 and 1550 nm, which suggests that the narrow bandgap of black phosphorus could allow operation at wavelengths as long as 4 µm. The detected spectrum peaks at 60 GHz, where the signal-to-noise ratio is of the order of 40 dB, and the detectable signal extends to 0.2 THz. The measured signal strongly depends on the polarization of the THz field and the gating pulse, which is explained by the role of the antenna and the anisotropy of the black phosphorus flake, respectively. We analyze the limitations of the device and show potential improvements that could significantly increase the efficiency and bandwidth.

10.
Nat Commun ; 8: 15042, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28485387

ABSTRACT

Saturation of carrier occupation in optically excited materials is a well-established phenomenon. However, so far, the observed saturation effects have always occurred in the strong-excitation regime and have been explained by Pauli blocking of the optically filled quantum states. On the basis of microscopic theory combined with ultrafast pump-probe experiments, we reveal a new low-intensity saturation regime in graphene that is purely based on many-particle scattering and not Pauli blocking. This results in an unconventional double-bended saturation behaviour: both bendings separately follow the standard saturation model exhibiting two saturation fluences; however, the corresponding fluences differ by three orders of magnitude and have different physical origin. Our results demonstrate that this new and unexpected behaviour can be ascribed to an interplay between time-dependent many-particle scattering and phase-space filling effects.

11.
Phys Rev Lett ; 117(25): 257401, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-28036204

ABSTRACT

Hot electron effects in graphene are significant because of graphene's small electronic heat capacity and weak electron-phonon coupling, yet the dynamics and cooling mechanisms of hot electrons in graphene are not completely understood. We describe a novel photocurrent spectroscopy method that uses the mixing of continuous-wave lasers in a graphene photothermal detector to measure the frequency dependence and nonlinearity of hot-electron cooling in graphene as a function of the carrier concentration and temperature. The method offers unparalleled sensitivity to the nonlinearity, and probes the ultrafast cooling of hot carriers with an optical fluence that is orders of magnitude smaller than in conventional time-domain methods, allowing for accurate characterization of electron-phonon cooling near charge neutrality. Our measurements reveal that near the charge neutral point the nonlinear power dependence of the electron cooling is dominated by disorder-assisted collisions, while at higher carrier concentrations conventional momentum-conserving cooling prevails in the nonlinear dependence. The relative contribution of these competing mechanisms can be electrostatically tuned through the application of a gate voltage-an effect that is unique to graphene.

12.
Nano Lett ; 16(4): 2734-8, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26978242

ABSTRACT

Subwavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, subwavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a terahertz pump-terahertz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by 2 orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results. The model shows that the observed strong linearity is caused by an unexpected red shift of plasmon resonance together with a broadening and weakening of the resonance caused by the transient increase in electron temperature. The model further predicts that even greater resonant enhancement of the nonlinear response can be expected in high-mobility graphene, suggesting that nonlinear graphene plasmonic devices could be promising candidates for nonlinear optical processing.

13.
Opt Express ; 23(22): 28728-35, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26561141

ABSTRACT

Graphene has unique optical and electronic properties that make it attractive as an active material for broadband ultrafast detection. We present here a graphene-based detector that shows 40-picosecond electrical rise time over a spectral range that spans nearly three orders of magnitude, from the visible to the far-infrared. The detector employs a large area graphene active region with interdigitated electrodes that are connected to a log-periodic antenna to improve the long-wavelength collection efficiency, and a silicon carbide substrate that is transparent throughout the visible regime. The detector exhibits a noise-equivalent power of approximately 100 µW·Hz(-½) and is characterized at wavelengths from 780 nm to 500 µm.

14.
Opt Express ; 23(16): 20732-42, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26367925

ABSTRACT

We report on ultrafast detection of radiation between 100 GHz and 22 THz by field-effect transistors in a large area configuration. With the exception of the Reststrahlenband of GaAs, the spectral coverage of the GaAs-based detectors is more than two orders of magnitude, covering the entire THz range (100 GHz - 10 THz). The temporal resolution of the robust devices is yet limited by the 30 GHz oscilloscope used for read out. The responsivity roll-off towards higher frequencies is weaker than expected from an RC-roll-off model. Terahertz pulses with peak powers of up to 65kW have been recorded without damaging the devices.

15.
Nano Lett ; 14(3): 1504-7, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24559191

ABSTRACT

We present a pump-probe experiment on graphene, which reveals a pronounced dependence of the pump-induced transmission on the angle between pump and probe polarization. It reflects a strong anisotropy of the pump-induced occupation of photogenerated carriers in momentum space. Within 150 fs after excitation, an isotropic carrier distribution is established. The experiments are well described by microscopic modeling, which identifies carrier-phonon scattering to be the main relaxation mechanism giving rise to an isotropic carrier distribution.

16.
Nanotechnology ; 24(21): 214007, 2013 May 31.
Article in English | MEDLINE | ID: mdl-23619031

ABSTRACT

We present scalable large area terahertz (THz) emitters based on a nanoscale multilayer InGaAs/InAlAs heterostructure and a microstructured electrode pattern. The emitters are designed for pump lasers working at the telecommunication wavelength of 1.55 µm. Electric THz fields of more than 2.5 V cm⁻¹ are reached with moderate pump powers of 80 mW, the corresponding spectrum extends up to 3 THz. The saturation characteristics have been investigated for different pump laser spot sizes. For small pump powers of less than 50 mW the emitted THz field is nearly independent of the spot size, for higher pump powers and small spot sizes a clear saturation of the generated THz pulse can be observed. Hence the use of scalable emitters is especially promising for high power fibre laser systems. The spectral content of the generated radiation is nearly independent of the parameters spot size, pump power, and bias voltage, which allows for stable operation in spectroscopic applications.


Subject(s)
Arsenicals/chemistry , Gallium/chemistry , Indium/chemistry , Lasers , Lighting/instrumentation , Nanoparticles/chemistry , Nanotechnology/instrumentation , Terahertz Radiation , Arsenicals/radiation effects , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Gallium/radiation effects , Indium/radiation effects , Materials Testing , Nanoparticles/radiation effects , Nanoparticles/ultrastructure , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...